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Abstract: The problem of sensor fault identification in technical systems described by linear equations under the 
external disturbances is studied. To solve the problem, sliding mode observer is used which is constructed based on the 
reduced-order model of the original system. This model is sensitive to the faults and insensitive to the disturbances. It is 
shown that if some conditions are met, then sliding mode exists which allows obtaining exact estimation of the fault. 
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1. INTRODUCTION 

Various sensors are an integral part of almost any 
technical system. They are often the least reliable 
elements of the system, as a result of which, when 
faults appear in them, the sensors can provide 
distorted information about the state of the system, 
which will ultimately lead to erroneous responses of the 
control system. If the magnitude of the faults that have 
arisen can be estimated, this information can be used 
to correct the distortions and restore the normal 
operation of the control system. 

Currently, sliding mode observers are actively used 
to estimate (identify) the magnitudes of the faults that 
have arisen [1-6]. In these paper, the problem of 
identification for various classes of systems and faults 
arising both in the dynamics and drives of the system 
and its sensors is solved. It is assumed that before 
identification, the localization problem is solved, 
determining which sensor is faulty. For concreteness, 
below we will assume that the distortion of sensor 
readings is described by an unknown function d(t)  
that needs to be identified. 

It should be noted that the problem of identifying 
sensor faults was considered in [2], where only an 
approximate solution was obtained, since the final 
expression contains the derivative !d(t) . The method 
proposed in [6] gives an exact solution due to the use 
of a special high-dimensional system, on the basis of 
which a sliding mode observer is constructed. In 
contrast to these methods, in the present work the 
sliding mode observer is constructed on the basis of a 
reduced-order model of the original system of low  
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dimension, insensitive to disturbances, which does not 
contain the derivative !d(t) . 

This work is a logical continuation of the article [5], 
where the problem of identifying sensor faults in 
technical systems was considered on the basis of 
sliding mode observers. From [1-5] and similar works it 
follows that the problem can be solved by imposing a 
number of conditions on the original system, which are 
far from always satisfied, which makes it impossible to 
solve the identification problem. 

These conditions can be significantly weakened by 
using the so-called high-order sliding mode observers, 
considered in a number of articles [7, 8], which are 
based on the Levant differentiator [9]. To implement 
this idea, the paper poses and solves the problem of 
identifying sensor faults based on high-order sliding 
mode observers. The novelty of the paper is that, 
unlike known works, the identification procedure is not 
sensitive to external disturbances and is implemented 
without imposing a matching condition, which makes it 
possible to solve the identification problem for a wider 
class of systems. 

To do this, we will first present the basic information 
about high-order sliding mode observers based on [7], 
since the approach of papers [8] imposes more 
restrictions on the original system. 

2. PRELIMINARIES 

Let us consider a class of systems described by 
equations 
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      (1) 

where x(t)! Rn  and u(t)! Rm  are the state and 
control vectors, y(t)! R  is a scalar measurement; 
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A ! Rn"n , B ! Rn"m , L ! Rn"1  and C ! R1"n  are 
known constant matrices; !(t)" R  is an unknown 
scalar function of time describing the disturbances 
acting on the system. Note that to solve the problem 
under consideration, in [1-4] a matching condition was 
imposed on system (1), which is removed in [7-9]. Let 
us introduce several concepts from [7] necessary for 
further exposition. 

Recall that the observability matrix of system (1) is 
called the matrix 
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It is assumed that the pair (C,  A)  is observable, i.e. 
rank(P) = n . It is known that in this case there exists a 

matrix K  such that !A = A!KC  will be stable. It is 
also assumed that system (1) is minimal-phase, i.e. the 
invariant zeros of the triple (A,C,L)  have negative 
real parts. The latter means that the zeros of the 
transfer function of system (1) are stable. 

The relative degree of system (1) for the variable 
!(t)  is a number n1  such that 

CA jL = 0,       j =1,2,...,n1 ! 2,  CA
n1!1L " 0.  

It is known that n1 ! n  and by the corresponding 
coordinate transformation, the system can be reduced 
to the form 
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where A11 ! Rn1"n1 , A12 ! Rn1"(n#n1) , L1 ! Rn1"1 , and 

C1 ! R1"n1 , while 

A11 =
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L1 = ( 0 … 0 q )T , q ! 0 ,  

where !1,  ...,  !n  are some constants; if n1 = n , the 

subsystem with the vector x2  is absent. 

Let us first consider the case n1 = n , assuming that 

the unknown function )(tρ  is bounded together with its 
p  derivatives: !(t) "!0 , !(i) (t) "!0 , i =1,2,..., p . In 

addition, it is assumed that the p-th derivative satisfies 
the Lipschitz condition with constant !1 , i.e. 

|!( p) (t)"!( p) ( #t ) |$!1 | t " #t | . 

To estimate the value of the function, two observers 
are constructed, the first of which is a standard 
Luenberger observer of full order: 

!z(t) = Az(t)+Bu(t)+K(y(t)!Cz(t)),  z ! Rn ,    (3) 

K is the feedback gain matrix. The second is a sliding 
mode observer of high order [9], which has the 
following form: 

!v1 = w1 = !"n+p+1M
1/(n+p+1) | v1 ! y+Cz |

(n+p)/(n+p+1) sign(v1 ! y+Cz)+ v2 ,

!v2 = w2 = !"n+pM
1/(n+p) | v2 !w1 |

(n+p!1)/(n+p) sign(v2 !w1)+ v3,

                                                     "
!vn = wn = !" p+2M

1/( p+2) | vn !wn!1 |
( p+1)/( p+2) sign(vn !wn!1)+ vn!1,        

                                                     "
!vn+p = wn+p = !"2M

1/2 | vn+p!1 !wn+p!2 |
1/2 sign(vn+p!1 !wn+p!2 )+ vn+p ,

!vn+p+1 = !"1Msign(vn+p+1 !wn+p ),

 

          (4) 

where M  is a sufficiently large constant, the 
constants !i  are chosen sufficiently large according 
to the recommendations of [9]; in particular, it is 
proposed there !1 =1.1 , !2 =1.5 , !3 = 2 , !4 = 3 , 

!5 = 5 , !6 = 8 . 

Theorem [7]. The variable !(t)  can be estimated 
as 

!̂(t) = 1
q
(vn+1 " (b1v1 + b2v2 + ...+ bnvn )) ,     (5) 

where b1,   b2 ,   ...,   bn  are the coefficients of the 
characteristic equation of the matrix A!KC : 

det(A!KC ! sI ) = (!1)n (sn ! bns
n!1 ! ...! b1) . 

In [7] it is proved that under the restrictions imposed 
on system (1) and the corresponding choice of 
constants M  and !i  the estimate (5) will be exact 
after the end of the transient process in a finite time. It 
is additionally shown that if the measurements contain 
noise with a maximum amplitude ! , then the 
magnitude of the error in estimating the function !(t)  

is of the order of !( p+1)/(n+p+1) . 

In the case of n1 < n  under the same restrictions on 
the unknown function !(t) , its estimate can be 
obtained in a similar way by replacing the dimension n  
in formulas (4) and (5) with n1 . 
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In the simplest special case, when n =1 , system (1) 
has the form 

!x(t) = ax(t)+ bu(t)+ q!(t),
y(t) = x(t)

 

and the unknown function !(t)  satisfies the Lipschitz 
condition, i.e. p = 0 , we obtain: 

!z(t) = az(t)+ bu(t)+K(y(t)! z(t)),  

!v1 = w1 = !1.5M
1/2 | v1 ! y+ z |

1/2 sign(v1 ! y+ z)+ v2 ,
!v2 = !1.1Msign(v2 !w1).

 

Then, when M >| l |!0 , the estimate of the function 
!(t)  has the form 

!̂(t) = 1
q
(v2 " (a"K )v1) , K >| a | . 

3. REDUCED-ORDER MODEL DESIGN 

The requirement for scalarity of measurement in 
model (1) is a disadvantage of the approach [7], limiting 
the possibilities of its application. This disadvantage, 
however, can be overcome by analyzing not the 
original system, but its reduced (lower-dimensional) 
model, which can always be constructed in such a way 
as to be sensitive to the faults subject to evaluation. To 
present this idea, we consider a class of technical 
systems described by a linear model 
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      (6) 

Here x(t)! Rn , u(t)! Rm , y(t)! Rl  are the state, 

control, and measurement vectors; F ! Rn"n , 
G ! Rn"m , L ! Rn"q , and H ! Rl"n  are known 
constant matrices; cRtρ ∈)(  is an unknown function of 
time describing the disturbances acting on the system; 
di (t)! R  is a function describing the faults in the i-th 

sensor: in their absence di (t) = 0 , when a fault 

appears, di (t)  becomes an unknown function of time, 

i =1,2,...,l ; matrices D1 , …, Dl  associate faults with 
the corresponding components of the measurement 
vector: D1 = (1  0  ...   0)T , …, T)1   ...  0  0(=lD . It is 

assumed that each function di (t)w  satisfies the 
Lipschitz condition with some constant. 

For simplicity, we consider the case when faults are 
possible only in one sensor with the corresponding 
elements D  and d(t) . It is required to estimate the 
function d(t)  without the assumption of minimal 
phase of system (6). 

A reduced model of system (6), insensitive to 
disturbances, is described by the equation 

!x*(t) = F*x*(t)+G*u(t)+ J*Hx(t);
y*(t) = H*x*(t),

      (7) 

where x* ! Rk  is the state vector of dimension k < n , 

the matrix F*  and H*  of the dimensions k ! k  and 
1! k , respectively, have the canonical form 

F* =

0 1 0 ! 0
0 0 1 ! 0
0 0 0 … 0
! ! ! " !
0 0 0 ! 0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

,      H* = ( 1 0 0 ! 0 ).   (8) 

In contrast to system (6) and the observer 
constructed below, model (7) is a virtual object; in fact, 
it is a part of system (6). The term J*Hx(t)  is used 

instead of J*y(t)  to be able to take into account 
sensor faults. 

Note that to apply the methods of works [1-5] to 
system (7), it is necessary to fulfill the condition 
rank(H*J*D) = rank(J*D)  or equality PJ*D = (QH*)

T  
for some matrix Q  and a symmetric positive definite 
matrixP . The first, in particular, means that the fault 
should be included only in the first equation of system 
(7), which forms its output y*(t) , the second is also 
restrictive, which makes it impossible to apply these 
methods in many cases. The approach described in the 
previous section does not imply the use of these 
restrictions. 

Recall [5] that constant matrices J*  and G*  are 
determined based on the solution of the equation 

(N !J*1 ... !J*k )(V
(k )  B(k ) ) = 0 ,     (9) 

where 
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Solving equation (9) with the minimum dimension 
k , starting with k =1 , we determine the row 

(N !J*1 ... !J*k ) . Next, from the relations 

R* = ND
0 , !1 = R*H , !1F =!2 + J*1H , 

!iF =!i+1 + J*iH , i = 2,k !1 , !kF = J*kH ,  (10) 
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where D0  is the matrix of maximum rank such that 
D0D = 0 , the rows of the auxiliary matrix !  are 
determined and the matrix G* =!G  is found. Since 

y(t) = Hx(t)+Dd(t) , then in model (7) the term J*Hx(t)  

is replaced by J*y(t)! J*Dd(t) . For simplicity, we 

assume that the vector J*D ! 0  contains only one 
non-zero component equal to q . 

4. SOLUTION OF THE PROBLEM 

Comparing model (7) with systems (1) and (2), we 
can conclude that model (7) with matrices A = F* , 

B = (G*   J*) , L = !J*D , C = H*  and variables 

u(t) := u(t)
y(t)

!

"

#
#

$

%

&
&

, y(t) := y*(t) , and !(t) := d(t) , can be 

used as system (1), for which the problem of estimating 
an unknown function is solved.  

It is easy to verify that the observability matrix of the 
model (7) is the identity matrix, so the model is 
observable. We will assume that the matrix J*D  
satisfies the following condition: the complex frequency 
s , at which the rank of the Rosenbrock matrix 

R =
sI !F* J*D

H* 0

"

#

$
$

%

&

'
'

 

becomes smaller k +1, has a negative real part, i.e. 
system (7) is minimally phase.  

Remark. Let system (7) be minimally phase, i.e. 
some invariant zero s = s0  of the triple ),,( *** DJHF −  
has positive real part. This means that system (7) in the 
initial state x*(0)  will be unstable under the function 

d0 (t) = d0 exp( js0t)  where x*(0)  and d0  satisfy the 
equation  

s0I !F* J*D

H* 0

"

#

$
$

%

&

'
'

e0
d0

"

#

$
$

%

&

'
'
= 0 . 

It follows from the last equation that this is possible 
only in very rare and practically impossible cases. This 
means that the minimally phase demand is of no 
practical importance.  

Observer (3) in our case takes the form 

!z(t) = F*z(t)+G*u(t)+ J*y(t)+K(R*y! y*),  z ! Rk .  (11) 

Equations (4) describing the sliding mode observer 
retain their form with the replacement of the expression 
v1 ! y+Cz  in the first equation by v1 ! y* +H*z . The 

value of the number n1  coincides with the number of 

the component of the state vector of the model (7), 
which includes the function d(t) . 

Considering that the matrix K  is a column 
K = (k1   k2   ...  kk )

T , and F*  and H*  are given in the 
canonical form (8), the matrix A!KC  takes the form 

F* !KH* =

!k1 1 0 ! 0

!k2 0 1 ! 0

!k3 0 0 … 0

! ! ! " !
!kk 0 0 ! 0

"

#

$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
''

. 

Its characteristic equation has the form 

det(F* !KH* ! sI ) = (!1)
k (sk + k1s

k!1 + ...+ kk ) .  (12) 

From here, by analogy with (5), we obtain a formula 
for estimating the function d(t) : 

d̂(t) = 1
q
(vk+1 + (kkv1 + kk!1v2 + ...+ k1vk )) .   (13) 

Algorithm. 

Step 1. Solve equation (9) with minimal k and find 
the row (N !J*1 ... !J*k ) . 

Step 2. Calculate the row of the matrix !  from 
(10) and G* =!G . 

Step 3. Construct the reduced model (7) and verify 
is it minimally phase or not. 

Step 4. Choose the gain matrix K and construct the 
observer (11). 

Step 5. Construct the high order sliding mode 
observer (4) with n = k  and p = 0 . 

Step 6. Obtain the characteristic equation (12).  

Step 7. Estimate the fault according to (13). 

Computational complexity of this algorithm is of the 
order of n2 . 

5. EXAMPLE 

Let us consider the linearized model of a three-tank 
object given in [5] and described by the equations 

!x1 = !"1(x1 ! x2 )+ "2u1,
!x2 = "1(x1 ! x2 )! "3(x2 ! x3)+ "4u2 ,
!x3 = "3(x2 ! x3)! "5x3,
y1 = x1 + d,      y2 = x3,
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where the coefficients !1 ÷ !5  depend on the design 

features of the object, x1 ÷ x3  are the liquid levels in 
the tanks. Unlike [5], we will assume that the levels in 
the first and third tanks are measured. For simplicity, 
we will assume L = 0 , as well as !1 = ...= !5 =1 , which 
yields the following matrices: 

F =
!1 1 0
1 !2 1
0 1 !2

"

#

$
$
$

%

&

'
'
'

, G =
1 0
0 1
0 0

!

"

#
#
#

$

%

&
&
&

, H = 1 0 0
0 0 1

!

"
##

$

%
&& , 

D = 1
0

!

"
##

$

%
&& . 

Let us consider a fault in the first sensor, for which 
D0 = (0   1) . According to Step 1 of Algorithm, it is easy 
to verify that for 1=k  equation (9) has no solution, 
we will take k = 2 : 

( N !J*1 !J*2 )

1 !4 5
!1 1 0
0 1 !2
1 0 0
0 0 1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

= 0 , 

which yields N =1 , J*1 = (0   ! 4) , J*2 = (1   !3) . As a 
result, 

R* = (0   1) , ! = 0 0 1
0 1 2

"

#
$$

%

&
'' , G* =!G = 0 0

0 1

"

#
$$

%

&
'' , 

D* = !J*D = 0
!1

"

#
$$

%

&
'' , q = !1 . 

According to Step 3 of Algorithm, model (7) takes 
the form 

!x*1 = x*2 ! 4y2 ,
!x*2 = y1 !3y2 +u2 ! d,
y* = x*1 = y2.

 

Let us consider the Rosenbrock matrix of this 
model: 

R =
s !1 0
0 s 1
1 0 0

"

#

$
$
$

%

&

'
'
'

. 

It is easy to see that it is non-singular, i.e. the 
constructed model is minimally phase, i.e. means that 
the zeros of the transfer function of the reduced model 
are stable.  

Since J*D = 0
1

!

"
##

$

%
&& , then n1 = k = 2 ; according to 

Step 4 of Algorithm, we take K = 2
1

!

"
##

$

%
&&  and construct 

the Luenberger observer (10): 

!z1 = z2 ! 4y2 + 2(y2 ! y*) = z2 ! 2y2 ! 2y*,
!z2 = y1 !3y2 +u2 + (y2 ! y*) = y1 ! 2y2 ! y* +u2 ,
y* = z1.

 

Since the function d(t)  satisfies the Lipschitz 
condition, we take p = 0 . The sliding mode observer 
for !1 =1.1 , !2 =1.5 , !3 = 2 , and M = 0.5  takes the 
form 

!v1 = w1 = !2M
1/3 | v1 ! y2 + z*1 |

2/3 sign(v1 ! y2 + z*1)+ v2 ,

!v2 = w2 = !1,5M
1/2 | v2 !w1 |

1/2 sign(v2 !w1)+ v3,
!v3 = !1,1Msign(v3 !w2 ),      

M > 2 d1(t) .

 

We find the coefficients of the characteristic 
equation of the matrix F* !KH* : 

F* !KH* =
0 1
0 0

"

#
$$

%

&
''!

2
1

"

#
$$

%

&
''( 1 0 ) = !2 1

!1 0

"

#
$$

%

&
'' .  

Then, according to Step 6 of Algorithm, we obtain 
the characteristic equation: 

det(sI ! (F* !KH*)) = det
s+ 2 !1
1 s

"

#
$$

%

&
''= s

2 + 2s+1 , 

where b1 = !1,   b2 = !2 . As a result, the estimate of 
d(t)  takes the form 

d̂(t) = !(v3 + v1 + 2v2 ) . 

Note that since the function describing the fault is 
included in the second equation, the identification 
methods considered in [1-4] are not applicable in this 
case. 

The following controls were used during the 
simulation: u1(t) = sin(t) , u2 (t) = sin(0.3t) . The fault 
was modeled by the appearance of a signal 
d(t) = 0.2sin(!t / 2" 2!)  on the time interval of 4-8 s. 
The following initial conditions were used: x1(0) = 0.2 , 

x2 (0) = 0.05 , x3(0) = 0.02 . 

Figure 1 shows the graph of the estimate )(ˆ td , 
Figure 2 shows the graph of the identification error 

)(ˆ)()( tdtdt −=ε . It is clear from the figures that the 
constructed observers provide an exact estimate of the 
fault size after the end of the transient process in a 
finite time. 
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Simulation shows that the values !1 =1.1 , !2 =1.5 , 

!3 = 2 , and M = 0.5  are suitable for our example. 
However, for another system, this choice can be 
unsuccessful, and other values should be chosen. 

6. CONCLUSION 

The paper states and solves the problem of 
constructing high-order sliding mode observers to 
identify sensor faults in technical systems described by 
linear models. The problem is solved based on a 
reduced (lower-dimensional) model of the original 
system that is insensitive to disturbances. This made it 
possible to reduce the complexity of the identification 
tools and loosen the restrictions imposed on the 
original system to solve the problem. 
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