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Abstract:	
   In Intelligent Reflecting Surface (IRS)-assisted communication systems, accurate user localization, 
particularly Angle-Of-Arrival (AoA) and range estimation are challenging due to the computational complexity and limited 
resolution of traditional Multiple Signal Classification (MUSIC) algorithms. This paper introduces a hybrid IRS framework 
that combines machine learning with a modified MUSIC algorithm to achieve high-precision localization and enhanced 
security. The system integrates two Convolutional Neural Networks (CNNs): RefineNet, which refines AoA and range 
estimates from MUSIC pseudo-spectra, and ElementNet, which optimizes the number and placement of active IRS 
elements to balance accuracy with resource efficiency. Notably, ElementNet shows that only eight active elements are 
sufficient to obtain 90% of the best achievable localization accuracy, highlighting the efficiency of the proposed design. 
Validation on the DeepMIMO dataset demonstrates superior range accuracy and AoA precision. This work sheds light 
on the secure and high-precision localization for diverse wireless applications. 
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1. INTRODUCTION 

The transition to Sixth-Generation (6G) wireless 
networks demands unprecedented precision in user 
localization and signal security, particularly in 
Non-Line-of-Sight (NLOS) environments where 
conventional communication systems fall short. 
Emerging applications, such as autonomous vehicles, 
smart cities, and augmented reality, require 
centimeter-level positioning accuracy. 

However, traditional base station-centric 
approaches struggle to overcome obstacles such as 
buildings and terrain, which obstruct direct signal paths 
and create coverage gaps and security vulnerabilities. 

Intelligent Reflecting Surfaces (IRSs) have emerged 
as a transformative solution to these challenges. These 
reconfigurable metasurfaces comprise arrays of 
passive and active elements that can dynamically 
manipulate electromagnetic waves by adjusting their 
phase, amplitude, and polarization. Unlike traditional 
active relays that consume significant power, IRSs 
operate primarily in passive mode, making them 
energy-efficient and cost-effective for deployment on 
building facades, billboards, and urban infrastructure. 
By creating virtual line-of-sight paths, IRSs can extend 
coverage, enhance signal strength, and enable secure 
communication in complex propagation environments. 
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Despite their promise, effective IRS deployment 
requires accurate estimation of User Equipment (UE) 
positions through AoA and distance measurements. 
The Multiple Signal Classification (MUSIC), one of AoA 
algorithms, is widely used for this purpose, as it can 
separate signal and noise subspaces to achieve 
high-resolution parameter estimation. However, 
classical MUSIC faces significant limitations in IRS 
applications. First, its range accuracy is fundamentally 
constrained by grid resolution. Finer grids improve 
precision but exponentially increase computational 
complexity, making real-time implementation 
challenging. Second, AoA accuracy relies heavily on 
the number and placement of active sensing elements; 
however, increasing these elements escalates 
hardware costs and power consumption. 

This paper addresses these limitations through a 
hybrid IRS system that combines a modified MUSIC 
algorithm with modern machine learning techniques. In 
recent years, deep learning has become an essential 
tool across many areas of wireless communications, 
e.g., powering advances in channel estimation [22], 
channel-state information reconstruction [8, 21], 
sensing [10, 9], and security [1, 2]. Motivated by these 
approaches, our work employs two convolutional 
neural networks (CNNs) to overcome the trade-offs 
inherent in traditional methods. RefineNet processes 
MUSIC pseudo-spectra to deliver centimeter-level 
range and sub-degree AoA precision without 
increasing grid resolution, while ElementNet optimizes 
the number and placement of active elements to 
balance localization accuracy with resource efficiency. 
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The main contribution of this work can be summarized 
as follows: 

• We propose a modified MUSIC algorithm that 
separates AoA and range estimation into 
decoupled stages, thereby substantially reducing 
the computational cost compared to 
conventional 3D searches. A subsequent CNN 
model maintains high localization precision 
despite reduced search complexity. 

• To overcome the resolution limits of grid-based 
estimation and to reduce hardware cost, we 
introduce two dedicated CNN models: RefineNet, 
which learns spatial patterns in the MUSIC 
pseudo-spectrum to deliver centimeter-level 
range accuracy and sub-degree AoA precision, 
and ElementNet, which predicts the optimal 
number and spatial placement of active IRS 
sensing elements, achieving comparable 
localization accuracy with significantly fewer 
active elements. 

• The joint framework is evaluated on the 
DeepMIMO [4] ray-tracing dataset, 
demonstrating robust operation under multipath 
propagation and NLOS conditions. Results 
confirm consistent centimeter-level range 
estimation, sub-degree angular accuracy, and 
reliable secure-user classification in practical, 
interference-rich wireless environments. 

• In addition, our evaluation demonstrates that 
only eight active IRS elements (out of 625) are 
sufficient to achieve over 90% of the best 
achievable localization accuracy. This result 
highlights a practical trade-off between hardware 
complexity and estimation accuracy, significantly 
reducing cost while preserving near-optimal 
localization performance. 

The remainder of the paper is organized as follows. 
Section 2 discusses related works, while Section 3 and 
Section 4 presents the system model and the 
methodology, respectively. Section 5 discusses the 
results. Finally, Section 6 offers concluding remarks on 
the findings of this study. 

2. RELATED WORK 

 AoA and Distance Estimation in IRS-Assisted 
Localization: Accurate user localization in 
IRS-assisted wireless systems requires estimating both 
AoA and distance. Classical approaches for AoA 
estimation analyze the covariance structure of received 
signals, with MUSIC being prominent due to its high 
resolution and the ability to detect multiple signals at 
relatively low computational cost [6, 11, 14, 28]. 

For IRS-assisted systems specifically, Tang et al. 
[24] demonstrated that MUSIC-based AoA estimation 
can be performed using hybrid passive-active elements. 
However, their approach was limited to angular 
estimation with multidimensional grid searches. In 
contrast, when users are in the radiative near-field of a 
large antenna array or IRS, spherical wavefronts 
introduce dependencies on both AoA and distance, 
necessitating joint estimation as pursued in our work. 

Early works extended MUSIC into 2D or 3D grid 
searches [16, 15, 29], but direct extension to 3D cases 
suffers from prohibitive computational complexity. 
Recent works has focused on decoupling strategies 
that estimate angular parameters and distance 
sequentially. Ramezani et al. [20] proposed an efficient 
modified MUSIC algorithm that separates estimation of 
azimuth, elevation, and range, though multiple matrix 
inversions limit scalability to large IRS setups. In 
IRS-assisted systems, the large aperture of the surface 
greatly increases the chances of users being in the 
radiative near-field, which in turn requires the 
simultaneous estimation of azimuth, elevation, and 
distance parameters for user localization. 

Our approach combines elements from these 
research directions. We adopt MUSIC for IRS-based 
signal classification from Tang et al. [24], but follow the 
decoupling strategy introduced by Ramezani et al. [20] 
and others [15, 29] to reduce computational complexity. 
Prior work reports accuracy comparable to 3D-MUSIC 
with substantially lower complexity. We use a 2D AoA 
search followed by K  independent 1D range 
searches, preserving accuracy while offering lower 
computational burden. 

 IRS-Aided Signal Classification and Active 
Element Optimization: Hybrid IRS architectures, 
where most elements are passive and only a few are 
active, extend functionality beyond reflection into 
sensing and classification. Tang et al. [24] showed that 
a small set of active IRS elements can effectively turn 
the IRS into a smart antenna array with minimal 
overhead. However, AoA-only classification becomes 
unreliable when signals arrive from closely spaced 
directions, and dense grid searches limit real-time 
applicability. 

To address these issues, our work combines 
angular and distance features, first estimating azimuth 
and elevation using a decoupled 2D MUSIC search 
and then refining user distances with a 1D MUSIC scan. 
Previous works on active element selection have 
generally used fixed numbers or simple contiguous 
subarrays. Zhi and Chia [29] proposed symmetric 
subarray division, while Tang et al. [24] demonstrated 
reliable classification with few active sensors. The 
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optimal number and placement of active elements 
remain open challenges for large IRS arrays [19]. 

Our work treats active element selection as a 
learning problem through ElementNet, a lightweight 
CNN that predicts both the number and placement of 
active elements required for robust AoA estimation. 
Instead of uniform or block-based selection, our model 
identifies the most informative elements, minimizing 
active hardware while maintaining accuracy. 

3. SYSTEM MODEL 

3.1. Problem Statement 

We consider a hybrid IRS system serving K = 4  
UEs in a multipath propagation environment. The IRS 
consists of N = 625  total elements arranged in a 
25! 25  uniform planar array, of which M ! N , where 
M  denotes the number of elements that operate in 
active sensing mode while the remainder function as 
passive reflectors. The system must simultaneously 
achieve two objectives: accurate user localization and 
efficient resource utilization. The overall system model 
is illustrated in Figure 1, where ElementNet selects a 
sparse set of active sensing elements, MUSIC provides 
coarse AoA and range estimates, and RefineNet 
further refines these estimates to achieve 
high-precision UE localization. 

The system is based on the following given 
parameters:(i) A snapshot matrix H !CM"T  (M =100 ,
T = 3000 ): The received channel is represented by a 
snapshot matrix H !CM"T , where C  denotes the 
complex domain, M =100  corresponds to the number 
of active IRS elements in the 10!10  subarray, and 
T = 3000  is the number of temporal snapshots 
collected. The snapshot length of T = 3000  was 
chosen to provide sufficient statistical diversity for 

training while remaining computationally efficient. The 
dataset is generated using the DeepMIMO O1_28 
scenario at 3.5GHz  with carrier wavelength 

! = 0.0857m  [4]. (ii) Coarse AoA estimates (!k ,"k )  
are obtained from a 2D MUSIC search over a 301!301  
grid with angular resolution !" = !# = $ / 300rad  [23]. 
Here, !k  and !k  denote the azimuth (horizontal) and 
elevation (vertical) AoAs of the k -th user, respectively, 
representing the 3D direction of arrival at the IRS. 
These coarse estimates are subsequently refined by 
RefineNet to achieve sub-degree precision. (iii) Coarse 
range estimates (rk )  are obtained using a 
one-dimensional MUSIC search. Instead of performing 
a full 3D search over (!," ,r) , which is computationally 
expensive, the coarse AoA estimates (!k ,"k )  are first 
fixed and then a search is performed across 161 
uniformly spaced range points within 
r ! [rmin "5, rmax +5] , with resolution !r ! 0.1m . The 
peak of the MUSIC pseudo-spectrum over this grid 
gives the coarse range kr , which is later refined by 
RefineNet for centimeter-level accuracy. (iv) A 25! 25  
IRS: The IRS has known element positions, with the 
number M  and placement of active elements 
optimized under hardware and power constraints. 

The goals are to: (i) Refine both AoA and range 
(coarse estimates from MUSIC algorithm) using 
RefineNet, learning a mapping, R301!301" R2K  that 
takes the 2D pseudo-spectrum to output refined angles 
{!1,…,!K ,"1,…,"K} , Here, {!1,…,!K ,"1,…,"K}  denote 
the azimuth and elevation angles-of-arrival of the K  
user signals respectively. The range is produced by a 
companion CNN (RefineNet-Range) with K  outputs 
[r1,…,rK ]  from the same input spectra, i.e., 

R301!301" RK for all ranges (rk )  for (K = 4)  UEs [26]. 

(ii) Optimize the number M  and placement of active 
elements using ElementNet, a CNN that maps channel 

 

Figure 1: Hybrid IRS-assisted system model integrating active/passive elements, MUSIC-based coarse estimation, and 
CNN-based refinement (ElementNet + RefineNet) for accurate UE localization. 
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features (!," ,r)  and IRS configuration to a 25! 25  
binary mask, selecting the minimum M  to yields 
minimum AoA error within 10% of the minimum 
observed value, thereby achieving over 90% of the 
localization accuracy [27]. 

3.2. Architectures of the Proposed Neural 
Networks 

This subsection describes the CNN architectures of 
RefineNet and ElementNet, which utilize convolutional 
layers to process spatial data such as 
pseudo-spectrum and IRS grid, predicting refined 
estimates and optimal element configurations. These 
models employ convolutional layers to extract spatial 
patterns, incorporating L2  regularization and dropout 
to prevent overfitting, and are designed with tailored 
outputs to predict continuous values (angles and 
ranges). For ElementNet, we explicitly add an L1  
sparsity term to encourage compact masks (element 
placement). CNNs are particularly well-suited for these 
tasks due to their ability to detect local patterns, such 
as peaks in the pseudo-spectrum for AoA and range 
estimation or optimal element configurations in the IRS 
grid, and to learn complex mappings from DeepMIMO 
data [26, 27]. 

3.2.1. RefineNet for AoA and Range Refinement 

The CNN-based RefineNet model (as shown in 
Figure 2) processes the 2D MUSIC pseudo-spectrum 
to predict refined AoA and range estimates. The 
network takes a 301!301!1  input representing the 
pseudo-spectrum and applies two convolutional layers 
with 16 and 32 filters (both 5!5  kernels) using ReLU 
activation and L2 regularization (0.01) to extract 
hierarchical spatial features. The resulting feature 
maps are flattened and passed through a 64-unit dense 
layer with ReLU and L2 regularization, followed by 
dropout (0.5 rate) to prevent overfitting. For angle 
estimation, the output layer produces 2K  values 
[!1,…,!K ,"1,…,"K ] , while for range estimation, a 
separate network with identical architecture outputs K  
values [r1,…,rK ]  from the same input spectra. With 

approximately 15,000  parameters, RefineNet remains 
computationally efficient, enabling real-time inference 
for practical localization applications. 

3.2.2. ElementNet for Active Element Optimization 

The ElementNet (as shown in Figure 3) is designed 
to optimize the number and placement of active IRS 
elements. The architecture accepts a 25! 25! (3K +1)  
input tensor, where 3K  channels contain the 
broadcast channel features [!1,…,!K ,"1,…,"K ,r1,…,rK ]  
for K  users, plus one auxiliary channel. Note that 
during training, we do not feed the ground-truth mask 
as input to avoid label leakage. The network begins 
with two convolutional layers: the first applies 32 filters 
with 3!3  kernels and ReLU activation to extract 
spatial patterns in element placement and channel 
features, while the second uses 64 filters with 3!3  
kernels and ReLU activation to enhance feature 
extraction. The resulting feature maps are then 
flattened into a one-dimensional vector and passed 
through a dense layer with 128 neurons and ReLU 
activation to learn complex relationships between 
channel characteristics and optimal element 
configurations. Finally, the output layer consists of 625 
neurons with sigmoid activation, which are reshaped 
into a 25! 25  binary mask indicating the predicted 
positions of the active elements. 

 

Figure 3: ElementNet Architecture. 

ElementNet uses a custom loss function combining 
mean squared error (MSE) for accuracy and a sparsity 
penalty (weighted by 0.1 ) to favor fewer active 
elements. It predicts a mask, from which the top M 
elements are selected, with M chosen to minimize AoA 

 

Figure 2: RefineNet architecture for AoA and Range refinement. 
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error within 10%, which is sufficient to achieve over 
90% of the best achievable localization accuracy. 

4. METHODOLOGY 

This section details the dataset preparation, training 
methodology, and algorithms used in the proposed 
system. The methodology builds on the hybrid IRS 
architecture to refine localization estimates and 
optimize resource allocation through deep learning. 
This section also outlines the implementation details, 
including dataset preparation using the DeepMIMO 
framework and the training methodology for RefineNet 
and ElementNet. 

4.1. Dataset Preparation 

The process of generating and preparing the 
DeepMIMO dataset for training and validation is 
explained here. The dataset is generated using the 
DeepMIMO O1_28 scenario at 3.5GHz  [4]. The steps 
involved in preparation are as follows: 

Channel Generation: Select K  UEs with the 
smallest LOS distances (e.g., 6!12m ) from rows 1!10 , 
columns 1!10 . Generate ( T = 3000 ) narrowband 
snapshots per UE, combining LOS and multipath 
returns, with Additive White Gaussian Noise (AWGN) 
at !2 =10"(200"30)/10 . 

MUSIC Processing: Apply spatial smoothing with 16 
overlapping 7!7  subarrays, M sub = 49 , within the 

10!10  active subarray [29]. Here, M sub = 49  denotes 
the number of elements in each 7!7  subarray used 
for spatial smoothing, chosen as a trade-off between 
maintaining spatial resolution and enabling sufficient 
overlapping blocks for averaging. Compute the 
smoothed covariance matrix R , perform 
eigen-decomposition, and extract the noise subspace: 
Vn !"

49#(49$K )  [26]. 

Pseudo-Spectrum for RefineNet: We generate 2D 
pseudo-spectra ( 301!301 ) for 30 scenarios, where 
each scenario corresponds to one channel realization 
in the DeepMIMO O1_28 environment. A scenario is 
defined by a specific set of user positions, their 
associated channel snapshots, and the resulting 
pseudo-spectra with ground-truth labels. The choice of 
30 scenarios provides a practical balance between 
dataset diversity and computational cost. With K = 4  
users and T = 3000  snapshots per user, this yields 
more than 360,000 training samples, which is sufficient 
for the proposed CNN models. The dataset is paired 
with true (!," ,r)  values for K = 4  UEs and is divided 
into 80%  training (25 scenarios, 100 examples) and 
20%  validation (5 scenarios, 20 examples). 

Placement Data for ElementNet: For each scenario, 
test M  from K = 4  to K +6 =10 , selecting the 

smallest M  achieving AoA error ! 5! . Generate 
binary masks ( 25! 25 ) for optimal active element 
placements, paired with channel features (!," ,r) . 
Total: 25 scenarios, 80%  training (20 examples), 
20%  validation (5 examples). 

4.2. Training Methodology 

This subsection provides the training 
hyperparameters and algorithms for RefineNet and 
ElementNet, ensuring effective model optimization. 

RefineNet: The network is trained using the Mean 
Squared Error (MSE) loss to minimize the difference 
between the predicted and true AoA and range values:  

LAoA =
1
N k=1

K

![(!̂k "!k )2 + ("̂k ""k )2]       (1) 

LRange =
1
N k=1

K

! r̂k " rk( )
2

       (2) 

where N  is the total number of training samples, K  
is the number of users or signals being localized in 
each sample, !̂k , !̂k , and r̂k  are the predicted 
azimuth angle, elevation angle, and range for the k -th 
user, and !k , !k , and rk  are the corresponding 
ground-truth values. This loss quantifies the prediction 
error and guides the refinement process. The model 
uses the Adam optimizer with a learning rate of 10!4 , 
benefiting from adaptive momentum to accelerate 
convergence. A batch size of 4 ensures efficient 
gradient updates with limited memory use, while 
training proceeds for 20  epochs to achieve 
convergence without overfitting. Performance 
robustness is validated through 5-fold cross-validation 
[18], ensuring consistent accuracy across data 
partitions. 

ElementNet: This network is trained using a 
custom loss that combines MSE with an L1  sparsity 
penalty:  

       (3) 

where  measures the difference between the 
predicted and true element selection masks, w  
represents the selection weight vector for IRS elements, 
and ! = 0.1  controls the sparsity strength. The MSE 
term is expressed as:  

      (4) 

with N  denoting the number of IRS elements (e.g. 
25! 25 = 625 ), ŵi ! [0,1]  representing the predicted 
activation probability, and wi !{0,1}  being the binary 
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label of ground-truth (active/inactive). Thus, the overall 
ElementNet loss is: 

     (5) 

The first term enforces accuracy in predicting active 
elements, while the second encourages sparsity, 
allowing minimal, yet effective, element usage to 
balance localization performance and hardware cost [5]. 
The model uses the Adam optimizer (default learning 
rate) with a batch size of 8  to handle larger input 
tensors, trained for 20  epochs to ensure consistency 
with RefineNet. Validation is performed across five 
scenarios to evaluate the element placement 
optimization. All training is implemented in 
TensorFlow/Keras, with per-epoch data shuffling to 
enhance generalization using the DeepMIMO dataset 
[27]. 

4.3. Algorithm 

This subsection presents the training algorithms for 
RefineNet and ElementNet, which offer a structured 
approach to model optimization based on the prepared 
dataset. Algorithm 1 captures the training of one of the 
two CNNs, RefineNet (for AoA and range). It includes 
standardization (using Standard Scaler), MSE loss, 
Adam optimizer with learning rate !=10"4 , 20 epochs, 
and batch size 4 , per the code. The validation step 
reflects the 5-fold cross-validation. 

Algorithm 2 reflects Element Net’s training (active 
element placement model) with a custom loss 
(MSE+0.1°øsparsity), Adam optimizer, 20 epochs, and 
batch size 8. 

4.4. Evaluation Metrics 

Unlike normalized metrics such as Normalized 
Mean Squared Error (NMSE) or Peak Signal-to-Noise 
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Ratio (PSNR) that are sometimes used in signal 
processing tasks, this work focuses on MSE and 
sparsity loss. These were chosen because they directly 
align with the network training objectives: minimizing 
MSE ensures accurate refinement of AoA and range, 
while sparsity encourages efficient element selection. 
Using the same metrics for both training and evaluation 
avoids inconsistencies and provides a clear measure of 
model effectiveness [20, 24]. 

MSE: For both AoA and range refinement using 
RefineNet, the MSE was adopted as the primary 
evaluation metric. It measures the average squared 
difference between the predicted values ŷi  and the 

ground truth yi , and is defined as:  

MSE = 1
N i=1

N

! ŷi " yi( )
2
,        (6) 

where N  denotes the number of samples. Minimizing 
MSE ensures that the refined AoA and range estimates 
remain close to the true user positions. Because MSE 
was also the loss function during training, 
improvements observed in evaluation directly reflect 
successful network optimization [13]. 

Sparsity Loss: For active element selection in 
ElementNet, a sparsity-inducing regularizer was 
combined with the MSE objective to encourage 
compact solutions. The loss can be written as:  

      (7) 

where w  represents the selection weights of the 
candidate elements and !  controls the sparsity 
penalty. This ensures that only a minimal but 
informative subset of elements is activated, reducing 
hardware cost while retaining high accuracy [25]. In 
practice, this loss enabled ElementNet to converge 
toward a solution with only eight active elements out of 
625 while maintaining estimation accuracy within 
10–15% of the best achievable precision. 

Together, these two metrics capture the dual 
objectives of the proposed method: (i) improving the 
accuracy of the AoA estimation and the range, and (ii) 
minimizing the use of active elements without 
degrading performance. 

5. RESULTS AND DISCUSSION 

Conventional MUSIC-based approaches for 
IRS-assisted localization typically suffer from limited 
resolution and high computational burden, particularly 
in near-field scenarios. Our experiments therefore, 
evaluated whether combining a decoupled MUSIC 
formulation with CNN-based refinement could deliver 
more accurate estimates at reduced hardware and 
runtime cost. 

For range estimation, coarse MUSIC outputs 
exhibited errors on the order of 0.5–2 m depending on 
user position, a level that is problematic in dense 
propagation environments. After refinement with 
RefineNet, these errors consistently dropped to within 
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5–20 cm on average, representing more than a fourfold 
improvement. Table 1, shows values of true, coarse, 
and refined ranges, while Figure 4 presents the 
corresponding error reduction trends across epochs. 

 

Figure 4: Training and validation loss for Range estimation 
refinement. 

The training loss for range refinement started 
around 0.035 in the first epoch and steadily decreased 
to approximately 0.012 by epoch 15, while the 
validation loss followed a similar trend, converging near 
0.015. These numerical values demonstrate that MSE 
is an effective training objective, since lower MSE 
values directly translate to centimeter-level positional 
accuracy. 

For AoA estimation, coarse MUSIC results showed 
deviations of up to 2!  in azimuth and about 0.2!  in 
elevation. With refinement, these errors were reduced 
to within 0.1! – 0.2!  on average across all evaluated 
users, demonstrating sub-degree precision. Table 2 
shows that the refined AoA estimates follow the 
ground-truth values far more closely than the coarse 
MUSIC baseline.  

 

Figure 5: Training and validation loss for AoA estimation 
refinement. 

The training and validation loss curves in Figure 5 
further highlight the stability of the refinement process. 
Specifically, the training loss began near 0.030 in the 
first epoch and dropped to below 0.010 by epoch 20, 
while the validation loss converged slightly higher at 
around 0.012, with no divergence between the two 

Table 1: Range-Estimation Values Before and After CNN Refinement 

UE 
True Coarse Refined Coarse Refined 

Range (m) Est. (m) Est. (m) Error (m) Error (m) 

1  90.88   88.90   91.06   −1.98   +0.18 

2  90.93   90.45   90.99   −0.48  +0.09 

3  91.17   91.80   91.07   +0.63  −0.09 

4  91.14   89.55   91.11   −1.59  −0.03 

 

Table 2: Comparison of True and Estimated AoA Values Before and After CNN Refinement 

UE 
Azimuth Angle, ϕ (°) Elevation Angle, θ (°) 

True Coarse Est. Refined Est. True Coarse Est. Refined Est. 

1 −85.63 −87.60 −85.37 −2.52 −2.40 −2.52 

2 −85.25 −82.80 −85.04 −2.52 −2.40 −2.52 

3 −85.01 90.00 −84.68 −2.51 −2.40 −2.52 

4 −83.87 −78.00 −84.12 −2.52 −2.40 −2.52 
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curves. This close alignment between the training and 
validation curves indicates a strong generalization 
without overfitting, underscoring the robustness of the 
proposed CNN-based refinement. 

The optimization of active element usage was 
assessed through ElementNet. Here, the training loss 
is not limited to MSE but also incorporates a sparsity 
term, ensuring that the network learns to identify a 
minimal but effective subset of elements. As shown in 
Figure 6, the combined objective converges smoothly, 
with the sparsity penalty stabilizing after around 10 
epochs.  

 

Figure 6: Training loss (MSE + sparsity) for active element 
placement optimization. 

Figure 7 illustrates the effect of increasing the 
number of active IRS elements on the mean AoA error. 
With only eight active elements, the error is 
approximately 0.048! , while doubling to 16 elements 
reduces it to about 0.044! . At 24 elements, the error 
further decreases to 0.042! , and by 32 elements it 
approaches 0.040! . To determine the minimum 
number of active elements, a relative error–based 
criterion is applied. The mean AoA error obtained for 
each configuration of M  active IRS elements is 
compared to the lowest (best) observed error, and the 
smallest M  that achieves an error within 10% of this 
minimum is selected as the near-optimal configuration. 
For instance, in Figure 7, the minimum mean AoA error 
is approximately M = 8 , while the error at M = 8  is 
about 0.048! , giving a relative difference of 
(0.048!0.040) / 0.040 = 0.08 , or 8% . Hence, M = 8  
satisfies the 10% near-optimality condition, effectively 
achieving over 90% of the best achievable localization 
accuracy. Beyond this point, the curve flattens, 
indicating that further increases yield only marginal 
improvements. These results confirm that activating a 
small subset of carefully placed elements is sufficient to 
approach the best achievable accuracy, providing a 

favorable trade-off between performance and hardware 
cost. 

Taken together, these findings demonstrate that the 
proposed hybrid framework achieves centimeter-level 
range accuracy, sub-degree angular precision, and 
efficient active element usage with only eight sensors 
out of 625. While the results were obtained under 
DeepMIMO-generated scenarios and thus represent 
idealized conditions, the consistency of improvements 
across range, AoA, and hardware efficiency provides 
strong evidence of the methods practical potential. In 
real-world deployments, higher variance is to be 
expected; however, this approach provides valuable 
insights toward scalable and secure IRS-assisted 
localization. 

 

Figure 7: Mean AoA error versus number of active elements. 

6. CONCLUSION 

This paper presents a hybrid approach combining 
modified MUSIC algorithm with deep learning to 
achieve high-precision localization in IRS-assisted 
wireless communication systems. Our proposed 
system employs two specialized CNN models: 
RefineNet which refined AoA and range estimates from 
MUSIC pseudo-spectra, and ElementNet, which 
optimizes active element placement within the IRS. Our 
findings demonstrate that RefineNet achieves 
centimeter-level range accuracy (reducing errors from 
50–200 cm to 5–20 cm) and sub-degree AoA precision 
(improving from 2!  to within 0.1! – 0.2! ). During 
experimentation, the most notable challenge was the 
high computational load associated with recomputing 
MUSIC pseudo-spectra for multiple random masks and 
training seeds, which increased CPU time despite GPU 
acceleration. Occasional stalls were observed due to 
memory constraints, and minor fluctuations appeared 
in validation loss due to floating-point precision, both of 
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which were mitigated using data standardization and 
TensorFlow mixed-precision computation. Equally 
significant, ElementNet determines that only 8 active 
elements out of 625 are sufficient to maintain 
localization performance. In other words, the mean 
AoA error at M = 8  remains within 10% of the 
minimum error obtained when all active-element 
configurations are considered, achieving over 90% of 
the optimal performance while greatly reducing 
hardware cost and energy savings. The proposed 
hybrid approach can be beneficial toward practical IRS 
deployment in applications such as autonomous 
vehicles, smart cities, and augmented reality where 
precise localization is essential. 
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