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Abstract: In Intelligent Reflecting Surface (IRS)-assisted communication systems, accurate user localization,
particularly Angle-Of-Arrival (AoA) and range estimation are challenging due to the computational complexity and limited
resolution of traditional Multiple Signal Classification (MUSIC) algorithms. This paper introduces a hybrid IRS framework
that combines machine learning with a modified MUSIC algorithm to achieve high-precision localization and enhanced
security. The system integrates two Convolutional Neural Networks (CNNs): RefineNet, which refines AoA and range
estimates from MUSIC pseudo-spectra, and ElementNet, which optimizes the number and placement of active IRS
elements to balance accuracy with resource efficiency. Notably, ElementNet shows that only eight active elements are
sufficient to obtain 90% of the best achievable localization accuracy, highlighting the efficiency of the proposed design.
Validation on the DeepMIMO dataset demonstrates superior range accuracy and AoA precision. This work sheds light
on the secure and high-precision localization for diverse wireless applications.
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1. INTRODUCTION

The transition to Sixth-Generation (6G) wireless
networks demands unprecedented precision in user

localization and signal security, particularly in
Non-Line-of-Sight  (NLOS) environments where
conventional communication systems fall short.

Emerging applications, such as autonomous vehicles,
smart cities, and augmented reality, require
centimeter-level positioning accuracy.

However, traditional base station-centric
approaches struggle to overcome obstacles such as
buildings and terrain, which obstruct direct signal paths
and create coverage gaps and security vulnerabilities.

Intelligent Reflecting Surfaces (IRSs) have emerged
as a transformative solution to these challenges. These
reconfigurable metasurfaces comprise arrays of
passive and active elements that can dynamically
manipulate electromagnetic waves by adjusting their
phase, amplitude, and polarization. Unlike traditional
active relays that consume significant power, IRSs
operate primarily in passive mode, making them
energy-efficient and cost-effective for deployment on
building facades, billboards, and urban infrastructure.
By creating virtual line-of-sight paths, IRSs can extend
coverage, enhance signal strength, and enable secure
communication in complex propagation environments.
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Despite their promise, effective IRS deployment
requires accurate estimation of User Equipment (UE)
positions through AoA and distance measurements.
The Multiple Signal Classification (MUSIC), one of AcA
algorithms, is widely used for this purpose, as it can
separate signal and noise subspaces to achieve
high-resolution = parameter estimation. However,
classical MUSIC faces significant limitations in IRS
applications. First, its range accuracy is fundamentally
constrained by grid resolution. Finer grids improve
precision but exponentially increase computational
complexity, making real-time implementation
challenging. Second, AoA accuracy relies heavily on
the number and placement of active sensing elements;
however, increasing these elements escalates
hardware costs and power consumption.

This paper addresses these limitations through a
hybrid IRS system that combines a modified MUSIC
algorithm with modern machine learning techniques. In
recent years, deep learning has become an essential
tool across many areas of wireless communications,
e.g., powering advances in channel estimation [22],
channel-state information reconstruction [8, 21],
sensing [10, 9], and security [1, 2]. Motivated by these
approaches, our work employs two convolutional
neural networks (CNNs) to overcome the trade-offs
inherent in traditional methods. RefineNet processes
MUSIC pseudo-spectra to deliver centimeter-level
range and sub-degree AOoOA precision without
increasing grid resolution, while ElementNet optimizes
the number and placement of active elements to
balance localization accuracy with resource efficiency.
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The main contribution of this work can be summarized
as follows:

. We propose a modified MUSIC algorithm that
separates AoOA and range estimation into
decoupled stages, thereby substantially reducing
the  computational cost compared to
conventional 3D searches. A subsequent CNN
model maintains high localization precision
despite reduced search complexity.

. To overcome the resolution limits of grid-based
estimation and to reduce hardware cost, we
introduce two dedicated CNN models: RefineNet,
which learns spatial patterns in the MUSIC
pseudo-spectrum to deliver centimeter-level
range accuracy and sub-degree AoA precision,
and ElementNet, which predicts the optimal
number and spatial placement of active IRS
sensing elements, achieving comparable
localization accuracy with significantly fewer
active elements.

. The joint framework is evaluated on the
DeepMIMO [4] ray-tracing dataset,
demonstrating robust operation under multipath
propagation and NLOS conditions. Results
confirm  consistent centimeter-level range
estimation, sub-degree angular accuracy, and
reliable secure-user classification in practical,
interference-rich wireless environments.

. In addition, our evaluation demonstrates that
only eight active IRS elements (out of 625) are
sufficient to achieve over 90% of the best
achievable localization accuracy. This result
highlights a practical trade-off between hardware
complexity and estimation accuracy, significantly
reducing cost while preserving near-optimal
localization performance.

The remainder of the paper is organized as follows.
Section 2 discusses related works, while Section 3 and
Section 4 presents the system model and the
methodology, respectively. Section 5 discusses the
results. Finally, Section 6 offers concluding remarks on
the findings of this study.

2. RELATED WORK

AoA and Distance Estimation in IRS-Assisted
Localization:  Accurate  user localization in
IRS-assisted wireless systems requires estimating both
AoA and distance. Classical approaches for AoA
estimation analyze the covariance structure of received
signals, with MUSIC being prominent due to its high
resolution and the ability to detect multiple signals at
relatively low computational cost [6, 11, 14, 28].

For IRS-assisted systems specifically, Tang et al.
[24] demonstrated that MUSIC-based AoA estimation
can be performed using hybrid passive-active elements.
However, their approach was Ilimited to angular
estimation with multidimensional grid searches. In
contrast, when users are in the radiative near-field of a
large antenna array or IRS, spherical wavefronts
introduce dependencies on both AoA and distance,
necessitating joint estimation as pursued in our work.

Early works extended MUSIC into 2D or 3D grid
searches [16, 15, 29], but direct extension to 3D cases
suffers from prohibitive computational complexity.
Recent works has focused on decoupling strategies
that estimate angular parameters and distance
sequentially. Ramezani et al. [20] proposed an efficient
modified MUSIC algorithm that separates estimation of
azimuth, elevation, and range, though multiple matrix
inversions limit scalability to large IRS setups. In
IRS-assisted systems, the large aperture of the surface
greatly increases the chances of users being in the
radiative near-field, which in turn requires the
simultaneous estimation of azimuth, elevation, and
distance parameters for user localization.

Our approach combines elements from these
research directions. We adopt MUSIC for IRS-based
signal classification from Tang et al. [24], but follow the
decoupling strategy introduced by Ramezani et al. [20]
and others [15, 29] to reduce computational complexity.
Prior work reports accuracy comparable to 3D-MUSIC
with substantially lower complexity. We use a 2D AoA
search followed by K independent 1D range
searches, preserving accuracy while offering lower
computational burden.

IRS-Aided Signal Classification and Active
Element Optimization: Hybrid IRS architectures,
where most elements are passive and only a few are
active, extend functionality beyond reflection into
sensing and classification. Tang ef al. [24] showed that
a small set of active IRS elements can effectively turn
the IRS into a smart antenna array with minimal
overhead. However, AoA-only classification becomes
unreliable when signals arrive from closely spaced
directions, and dense grid searches limit real-time
applicability.

To address these issues, our work combines
angular and distance features, first estimating azimuth
and elevation using a decoupled 2D MUSIC search
and then refining user distances with a 1D MUSIC scan.
Previous works on active element selection have
generally used fixed numbers or simple contiguous
subarrays. Zhi and Chia [29] proposed symmetric
subarray division, while Tang et al. [24] demonstrated
reliable classification with few active sensors. The
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optimal number and placement of active elements
remain open challenges for large IRS arrays [19].

Our work treats active element selection as a
learning problem through ElementNet, a lightweight
CNN that predicts both the number and placement of
active elements required for robust AoA estimation.
Instead of uniform or block-based selection, our model
identifies the most informative elements, minimizing
active hardware while maintaining accuracy.

3. SYSTEM MODEL

3.1. Problem Statement

We consider a hybrid IRS system serving K =4
UEs in a multipath propagation environment. The IRS
consists of N =625 total elements arranged in a
25x%25 uniform planar array, of which M <N, where
M denotes the number of elements that operate in
active sensing mode while the remainder function as
passive reflectors. The system must simultaneously
achieve two objectives: accurate user localization and
efficient resource utilization. The overall system model
is illustrated in Figure 1, where ElementNet selects a
sparse set of active sensing elements, MUSIC provides
coarse AoA and range estimates, and RefineNet
further refines these estimates to achieve
high-precision UE localization.

The system is based on the following given

parameters:(i) A snapshot matrix HEC"" (M =100,
T =3000): The received channel is represented by a

snapshot matrix He€C"7 , where C denotes the
complex domain, M =100 corresponds to the number
of active IRS elements in the 10x10 subarray, and
T=3000 is the number of temporal snapshots
collected. The snapshot length of 7=3000 was
chosen to provide sufficient statistical diversity for

T\ ‘

N

[ Passive Element

. Active Element

training while remaining computationally efficient. The
dataset is generated using the DeepMIMO O1_28
scenario at 3.5GHz with carrier wavelength

A=0.0857m [4]. (i) Coarse AoA estimates (¢, .0,)
are obtained from a 2D MUSIC search overa 301x301
grid with angular resolution A¢=A6=x/300rad [23].
Here, ¢, and 6, denote the azimuth (horizontal) and

elevation (vertical) AoAs of the k -th user, respectively,
representing the 3D direction of arrival at the IRS.
These coarse estimates are subsequently refined by
RefineNet to achieve sub-degree precision. (iii) Coarse

range estimates (r) are obtained using a
one-dimensional MUSIC search. Instead of performing
a full 3D search over (¢,0,r), which is computationally
expensive, the coarse AoA estimates (¢,,0,) are first
fixed and then a search is performed across 161
uniformly spaced range points within
r&flr, =5r +5], with resolution Ar=0.lm . The
peak of the MUSIC pseudo-spectrum over this grid
gives the coarse range 7., which is later refined by
RefineNet for centimeter-level accuracy. (iv) A 25x25
IRS: The IRS has known element positions, with the

number M and placement of active elements
optimized under hardware and power constraints.

The goals are to: (i) Refine both AoA and range
(coarse estimates from MUSIC algorithm) using

RefineNet, learning a mapping, R*™"' —R** that
takes the 2D pseudo-spectrum to output refined angles

199y, 0,,...,0,} , Here, {¢,....0..0,,....,0,} denote
the azimuth and elevation angles-of-arrival of the K

user signals respectively. The range is produced by a
companion CNN (RefineNet-Range) with K outputs

[r5eom ] from the same input spectra, i.e.,
R*™ — R*for all ranges (r,) for (K=4) UEs [26].

(il) Optimize the number M and placement of active
elements using ElementNet, a CNN that maps channel

ElementNet
(Active Element Mask)

MUSIC
(Coarse AoA + Range)

l

RefineNet
(Refined AoA + Range)

Refined UE
Locations

Figure 1: Hybrid IRS-assisted system model integrating active/passive elements, MUSIC-based coarse estimation, and
CNN-based refinement (ElementNet + RefineNet) for accurate UE localization.
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features (¢,6,r) and IRS configuration to a 25x25
binary mask, selecting the minimum M to yields
minimum AoA error within 10% of the minimum
observed value, thereby achieving over 90% of the
localization accuracy [27].

3.2. Architectures of the
Networks

Proposed Neural

This subsection describes the CNN architectures of
RefineNet and ElementNet, which utilize convolutional
layers to process spatial data such as
pseudo-spectrum and IRS grid, predicting refined
estimates and optimal element configurations. These
models employ convolutional layers to extract spatial
patterns, incorporating L2 regularization and dropout
to prevent overfitting, and are designed with tailored
outputs to predict continuous values (angles and
ranges). For ElementNet, we explicity add an L1
sparsity term to encourage compact masks (element
placement). CNNs are particularly well-suited for these
tasks due to their ability to detect local patterns, such
as peaks in the pseudo-spectrum for AoA and range
estimation or optimal element configurations in the IRS
grid, and to learn complex mappings from DeepMIMO
data [26, 27].

3.2.1. RefineNet for AoA and Range Refinement

The CNN-based RefineNet model (as shown in
Figure 2) processes the 2D MUSIC pseudo-spectrum
to predict refined AoA and range estimates. The
network takes a 301x301x1 input representing the
pseudo-spectrum and applies two convolutional layers
with 16 and 32 filters (both 5x5 kernels) using ReLU
activation and L2 regularization (0.01) to extract
hierarchical spatial features. The resulting feature
maps are flattened and passed through a 64-unit dense
layer with ReLU and L2 regularization, followed by
dropout (0.5 rate) to prevent overfitting. For angle
estimation, the output layer produces 2K values
(4. .9,.0,,....0,] , while for range estimation, a
separate network with identical architecture outputs K
values [r,...,r,] from the same input spectra. With

approximately 15,000 parameters, RefineNet remains

computationally efficient, enabling real-time inference
for practical localization applications.

3.2.2. ElementNet for Active Element Optimization

The ElementNet (as shown in Figure 3) is designed
to optimize the number and placement of active IRS
elements. The architecture accepts a 25x25x (3K +1)

input tensor, where 3K channels contain the
broadcast channel features [¢,.,...,¢,.0,.....0,.7,....7; ]

for K users, plus one auxiliary channel. Note that
during training, we do not feed the ground-truth mask
as input to avoid label leakage. The network begins
with two convolutional layers: the first applies 32 filters
with 3x3 kernels and RelLU activation to extract
spatial patterns in element placement and channel
features, while the second uses 64 filters with 3x3
kernels and RelLU activation to enhance feature
extraction. The resulting feature maps are then
flattened into a one-dimensional vector and passed
through a dense layer with 128 neurons and RelLU
activation to learn complex relationships between
channel characteristics and optimal element
configurations. Finally, the output layer consists of 625
neurons with sigmoid activation, which are reshaped
into a 25x25 binary mask indicating the predicted
positions of the active elements.

s

32 filters, 3x3
Conv 2D+ ReLU
Flatten
¥
Dense 128

Conv 2D + ReLU

&

Figure 3: ElementNet Architecture.

ElementNet uses a custom loss function combining
mean squared error (MSE) for accuracy and a sparsity
penalty (weighted by 0.1 ) to favor fewer active
elements. It predicts a mask, from which the top M
elements are selected, with M chosen to minimize AoA

32 filters, 5 x5
Conv 2D + ReLU

=
w
x 3
w X
£ &
£
= >
e &
)

Figure 2: RefineNet architecture for AoA and Range refinement.

Dense 64
Dropout 0.5
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error within 10%, which is sufficient to achieve over
90% of the best achievable localization accuracy.

4. METHODOLOGY

This section details the dataset preparation, training
methodology, and algorithms used in the proposed
system. The methodology builds on the hybrid IRS
architecture to refine localization estimates and
optimize resource allocation through deep learning.
This section also outlines the implementation details,
including dataset preparation using the DeepMIMO
framework and the training methodology for RefineNet
and ElementNet.

4.1. Dataset Preparation

The process of generating and preparing the
DeepMIMO dataset for training and validation is
explained here. The dataset is generated using the
DeepMIMO O1_28 scenario at 3.5GHz [4]. The steps
involved in preparation are as follows:

Channel Generation: Select K UEs with the
smallest LOS distances (e.g., 6-12m ) from rows 1-10,
columns 1-10 . Generate ( 7=3000 ) narrowband
snapshots per UE, combining LOS and multipath
returns, with Additive White Gaussian Noise (AWGN)
at 0,2:10—(200—30)/10_

MUSIC Processing: Apply spatial smoothing with 16
overlapping 7x7 subarrays, M_, =49 , within the

10x10 active subarray [29]. Here, M_, =49 denotes

the number of elements in each 7x7 subarray used
for spatial smoothing, chosen as a trade-off between
maintaining spatial resolution and enabling sufficient
overlapping blocks for averaging. Compute the
smoothed  covariance  matrix R , perform
eigen-decomposition, and extract the noise subspace:

V EC49><(49—K) [26]

Pseudo-Spectrum for RefineNet: We generate 2D
pseudo-spectra (301x301) for 30 scenarios, where
each scenario corresponds to one channel realization
in the DeepMIMO O1_28 environment. A scenario is
defined by a specific set of user positions, their
associated channel snapshots, and the resulting
pseudo-spectra with ground-truth labels. The choice of
30 scenarios provides a practical balance between
dataset diversity and computational cost. With K =4
users and T =3000 snapshots per user, this yields
more than 360,000 training samples, which is sufficient
for the proposed CNN models. The dataset is paired
with true (¢,0,r) values for K =4 UEs and is divided
into 80% training (25 scenarios, 100 examples) and
20% validation (5 scenarios, 20 examples).

Placement Data for ElementNet: For each scenario,
test M from K=4 to K+6=10, selecting the

smallest M achieving AoA error =<5 . Generate
binary masks ( 25x25) for optimal active element
placements, paired with channel features (¢,6,r) .
Total: 25 scenarios, 80% training (20 examples),
20% validation (5 examples).

4.2. Training Methodology

This subsection provides the training
hyperparameters and algorithms for RefineNet and
ElementNet, ensuring effective model optimization.

RefineNet: The network is trained using the Mean
Squared Error (MSE) loss to minimize the difference
between the predicted and true AoA and range values:

LA.,A:%E[(@—¢k)2+(ék—9k)2] (1)
1 5. 2
Lunge = 2\ 75) (2)

k=1

where N is the total number of training samples, K
is the number of users or signals being localized in

each sample, q?k, ék, and 7 are the predicted

azimuth angle, elevation angle, and range for the &k -th

user, and ¢ , 6,, and r, are the corresponding
ground-truth values. This loss quantifies the prediction
error and guides the refinement process. The model
uses the Adam optimizer with a learning rate of 10™*,
benefiting from adaptive momentum to accelerate
convergence. A batch size of 4 ensures efficient
gradient updates with limited memory use, while
training proceeds for 20 epochs to achieve
convergence  without  overfitting.  Performance
robustness is validated through 5-fold cross-validation
[18], ensuring consistent accuracy across data
partitions.

ElementNet: This network is trained using a
custom loss that combines MSE with an L, sparsity
penalty:

L =Lwuse + A||w|1 (3)

where LMSE measures the difference between the
predicted and true element selection masks, w
represents the selection weight vector for IRS elements,
and A=0.1 controls the sparsity strength. The MSE
term is expressed as:

N

1 . 2
Lyse = = »_ (i — w;)
N i=1 (4)

with N denoting the number of IRS elements (e.g.
25%x25=625), w,€[0,1] representing the predicted
activation probability, and w, €{0,1} being the binary
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label of ground-truth (active/inactive). Thus, the overall
ElementNet loss is:

N
1 .
L= L3 (= w + A ¥
i=1 ()

The first term enforces accuracy in predicting active
elements, while the second encourages sparsity,
allowing minimal, yet effective, element usage to

balance localization performance and hardware cost [5].

The model uses the Adam optimizer (default learning
rate) with a batch size of 8 to handle larger input
tensors, trained for 20 epochs to ensure consistency
with RefineNet. Validation is performed across five
scenarios to evaluate the element placement
optimization.  All  training is implemented in
TensorFlow/Keras, with per-epoch data shuffling to
enhance generalization using the DeepMIMO dataset
[27].

4.3. Algorithm

This subsection presents the training algorithms for
RefineNet and ElementNet, which offer a structured
approach to model optimization based on the prepared
dataset. Algorithm 1 captures the training of one of the
two CNNs, RefineNet (for AoA and range). It includes
standardization (using Standard Scaler), MSE loss,
Adam optimizer with learning rate =107, 20 epochs,
and batch size 4, per the code. The validation step
reflects the 5-fold cross-validation.

Algorithm 2 reflects Element Net's training (active
element placement model) with a custom loss
(MSE+0.1°gsparsity), Adam optimizer, 20 epochs, and
batch size 8.

4.4. Evaluation Metrics

Unlike normalized metrics such as Normalized
Mean Squared Error (NMSE) or Peak Signal-to-Noise

Algorithm 1 RefineNet Training for AoA and Range Refinement

Require: Training set (S;,v;) fori = 1,..., N, where S; € R391%31 j5 the 2D MUSIC

pseudo-spectrum, and y;

e R*((AoA) or y; € RX (range) for K = 4 UEs. Vali-

dation set (S;,y;) for j =1,..., M. Neural network g(5;6) (RefineNet CNN) with
initial weights #. Learning rate n = 10~*. Number of epochs E = 20. Batch size
B = 4. Input scaler (StandardScaler) and output scaler (StandardScaler for AoA

and range)
Ensure: Trained weights 6*

1: Initialize # < random (e.g., Glorot initialization)
2: Standardize training and validation inputs:
3: S; + input_scaler.fit_transform(.S;)
4:  (Sj),S; «+ input_scaler.transform(Sj;)
5: Standardize training and validation outputs:
6:  y; + aoa_scaler.fit_transform(y;) or range_scaler.fit_transform(y;)
7:  y; + aoa_scaler.transform(y;) or range_scaler.transform(y;)
8: for epoch =1 to E do
9: Shuffle the training set (.S;, ;)
10:  Partition training set into mini-batches of size B
11:  for each mini-batch B do do
12: for each (Si,yi) € B do do
13: compute prediction: g; = g(Si; 0)
14: end for
15: compute batch loss:
| B| Z AoA head over R?K |
L= ieB
| B| Z Range head over RX.
ieB
16: update weights: 6 «— 6 — nVyL (via Adam optimizer)
17: evaluate validation loss on (S;,y;): Lvar = (1/M) >~ ,(9; — y;)?
18: Save trained weights 6%, input scaler, and output scaler
19:  end for
20: end for

21: return 6°
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Algorithm 2 ElementNet Training for Active Element Optimization

Require: Training set (X;, M;) for i = 1

..... N, where X; € R22¥25x(3K+1) ig the

input tensor (broadcast [, 6, r| features + 1 dummy/previous-mask channel), and
M; € {0,1}***?® is the target binary mask of active elements.

Number of epochs E = 20
Batch size B =8
Ensure: Trained weights ¢*

Neural network h(X; ¢) (ElementNet CNN) with initial weights ¢
Learning rate n (default Adam learning rate)

: Initialize ¢ + random (e.g., Glorot initialization)

: for epoch =1 to E do do

Partition data into mini-batches of size B

5
6
7:  Shuffle the training set (X;, M;)
8
9

for each mini-batch B do do

10: for each (wi, ;) in B do do

11: Compute prediction: M; = h(X;; @)

12: end for

13: Compute batch loss: L = (1/|B]) - 3, 5(M; — M;)? +0.1 3 M;
14: Update weights: ¢ < ¢ —n- V4L (e.g., via Adam optimizer)

15: end for
16: end for
17: return ¢*

Ratio (PSNR) that are sometimes used in signal
processing tasks, this work focuses on MSE and
sparsity loss. These were chosen because they directly
align with the network training objectives: minimizing
MSE ensures accurate refinement of AocA and range,
while sparsity encourages efficient element selection.
Using the same metrics for both training and evaluation
avoids inconsistencies and provides a clear measure of
model effectiveness [20, 24].

MSE: For both AoA and range refinement using
RefineNet, the MSE was adopted as the primary
evaluation metric. It measures the average squared

difference between the predicted values y, and the
ground truth y,, and is defined as:

ISy
MSE=—3(5,-) - (6)

i=1

where N denotes the number of samples. Minimizing
MSE ensures that the refined AoA and range estimates
remain close to the true user positions. Because MSE
was also the loss function during training,
improvements observed in evaluation directly reflect
successful network optimization [13].

Sparsity Loss: For active element selection in
ElementNet, a sparsity-inducing regularizer was
combined with the MSE objective to encourage
compact solutions. The loss can be written as:

Liotal = Lmse + A ||[wW]|1, 7)

where w represents the selection weights of the
candidate elements and A controls the sparsity
penalty. This ensures that only a minimal but
informative subset of elements is activated, reducing
hardware cost while retaining high accuracy [25]. In
practice, this loss enabled ElementNet to converge
toward a solution with only eight active elements out of
625 while maintaining estimation accuracy within
10-15% of the best achievable precision.

Together, these two metrics capture the dual
objectives of the proposed method: (i) improving the
accuracy of the AoA estimation and the range, and (ii)
minimizing the use of active elements without
degrading performance.

5. RESULTS AND DISCUSSION

Conventional MUSIC-based approaches for
IRS-assisted localization typically suffer from limited
resolution and high computational burden, particularly
in near-field scenarios. Our experiments therefore,
evaluated whether combining a decoupled MUSIC
formulation with CNN-based refinement could deliver
more accurate estimates at reduced hardware and
runtime cost.

For range estimation, coarse MUSIC outputs
exhibited errors on the order of 0.5—-2 m depending on
user position, a level that is problematic in dense
propagation environments. After refinement with
RefineNet, these errors consistently dropped to within
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Table 1: Range-Estimation Values Before and After CNN Refinement
True Coarse Refined Coarse Refined
UE
Range (m) Est. (m) Est. (m) Error (m) Error (m)
1 90.88 88.90 91.06 -1.98 +0.18
2 90.93 90.45 90.99 -0.48 +0.09
3 91.17 91.80 91.07 +0.63 -0.09
4 91.14 89.55 91.11 -1.59 -0.03

5-20 cm on average, representing more than a fourfold
improvement. Table 1, shows values of true, coarse,
and refined ranges, while Figure 4 presents the
corresponding error reduction trends across epochs.

—— Training Loss
501 Validation Loss
40 \
) |
3 \
— 30 \
@ \
= \
201 |
\ |
-
109 v |
\ LN
S N I I Y N A
0 ; : ; : :
00 25 50 75 10.0 125 15.0 175
Epoch

Figure 4: Training and validation loss for Range estimation
refinement.

The training loss for range refinement started
around 0.035 in the first epoch and steadily decreased
to approximately 0.012 by epoch 15, while the
validation loss followed a similar trend, converging near
0.015. These numerical values demonstrate that MSE
is an effective training objective, since lower MSE

values directly translate to centimeter-level positional
accuracy.

For AoA estimation, coarse MUSIC results showed
deviations of up to 2° in azimuth and about 0.2° in
elevation. With refinement, these errors were reduced
to within 0.1°'— 0.2° on average across all evaluated
users, demonstrating sub-degree precision. Table 2
shows that the refined AoA estimates follow the

ground-truth values far more closely than the coarse
MUSIC baseline.

100 —— Training Loss
————— Validation Loss
|
80 \
a
o 60
-
w
0
= 404
20
O‘ T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12,5 150 17.5
Epoch

Figure 5: Training and validation loss for AoA estimation
refinement.

The training and validation loss curves in Figure 5§
further highlight the stability of the refinement process.
Specifically, the training loss began near 0.030 in the
first epoch and dropped to below 0.010 by epoch 20,
while the validation loss converged slightly higher at
around 0.012, with no divergence between the two

Table 2: Comparison of True and Estimated AoA Values Before and After CNN Refinement

Azimuth Angle, ¢ (°) Elevation Angle, 0 (°)
UE
True Coarse Est. Refined Est. True Coarse Est. Refined Est.
1 -85.63 -87.60 -85.37 -2.52 -2.40 -2.52
2 -85.25 -82.80 -85.04 -2.52 -2.40 -2.52
3 -85.01 90.00 -84.68 -2.51 -2.40 -2.52
4 -83.87 -78.00 -84.12 -2.52 -2.40 -2.52
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curves. This close alignment between the training and
validation curves indicates a strong generalization
without overfitting, underscoring the robustness of the
proposed CNN-based refinement.

The optimization of active element usage was
assessed through ElementNet. Here, the training loss
is not limited to MSE but also incorporates a sparsity
term, ensuring that the network learns to identify a
minimal but effective subset of elements. As shown in
Figure 6, the combined objective converges smoothly,
with the sparsity penalty stabilizing after around 10
epochs.

27.51 —e— Training
—e— Validation

25.01

22.51

20.01

17.51

15.01

Loss (MSE + sparsity)

12.54

10.01

10.0 125 15.0 17.5
Epoch

00 25 50 75

Figure 6: Training loss (MSE + sparsity) for active element
placement optimization.

Figure 7 illustrates the effect of increasing the
number of active IRS elements on the mean AoA error.
With only eight active elements, the error is
approximately 0.048°, while doubling to 16 elements
reduces it to about 0.044°. At 24 elements, the error
further decreases to 0.042°, and by 32 elements it
approaches 0.040° . To determine the minimum
number of active elements, a relative error-based
criterion is applied. The mean AoA error obtained for
each configuration of M active IRS elements is
compared to the lowest (best) observed error, and the
smallest M that achieves an error within 10% of this
minimum is selected as the near-optimal configuration.
For instance, in Figure 7, the minimum mean AoA error
is approximately M =8, while the error at M =8 is
about 0.048° , giving a relative difference of
(0.048-0.040)/0.040=0.08 , or 8% . Hence, M =8
satisfies the 10% near-optimality condition, effectively
achieving over 90% of the best achievable localization
accuracy. Beyond this point, the curve flattens,
indicating that further increases yield only marginal
improvements. These results confirm that activating a
small subset of carefully placed elements is sufficient to
approach the best achievable accuracy, providing a

favorable trade-off between performance and hardware
cost.

Taken together, these findings demonstrate that the
proposed hybrid framework achieves centimeter-level
range accuracy, sub-degree angular precision, and
efficient active element usage with only eight sensors
out of 625. While the results were obtained under
DeepMIMO-generated scenarios and thus represent
idealized conditions, the consistency of improvements
across range, AoA, and hardware efficiency provides
strong evidence of the methods practical potential. In
real-world deployments, higher variance is to be
expected; however, this approach provides valuable
insights toward scalable and secure IRS-assisted
localization.

—e— Mean AoA error (best-of-15)

0.048+

0.046 1

0.044 1

0.042+

Mean AoA error (degrees)

0.0401

10 15 20 25 30
Number of active elements (M)

Figure 7: Mean AoA error versus number of active elements.

6. CONCLUSION

This paper presents a hybrid approach combining
modified MUSIC algorithm with deep learning to
achieve high-precision localization in IRS-assisted
wireless communication systems. Our proposed
system employs two specialized CNN models:
RefineNet which refined AoA and range estimates from
MUSIC pseudo-spectra, and ElementNet, which
optimizes active element placement within the IRS. Our
findings demonstrate that RefineNet achieves
centimeter-level range accuracy (reducing errors from
50-200 cm to 5-20 cm) and sub-degree AoA precision
(improving from 2° to within 0.1 — 0.2° ). During
experimentation, the most notable challenge was the
high computational load associated with recomputing
MUSIC pseudo-spectra for multiple random masks and
training seeds, which increased CPU time despite GPU
acceleration. Occasional stalls were observed due to
memory constraints, and minor fluctuations appeared
in validation loss due to floating-point precision, both of
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which were mitigated using data standardization and
TensorFlow mixed-precision computation. Equally
significant, ElementNet determines that only 8 active
elements out of 625 are sufficient to maintain
localization performance. In other words, the mean
AoA error at M =8 remains within 10% of the
minimum error obtained when all active-element
configurations are considered, achieving over 90% of
the optimal performance while greatly reducing
hardware cost and energy savings. The proposed
hybrid approach can be beneficial toward practical IRS
deployment in applications such as autonomous
vehicles, smart cities, and augmented reality where
precise localization is essential.
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