Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

AI and Quantum Computing for Advanced Materials Design

Submitted
August 31, 2025
Published
2025-10-21

Abstract

The AI-driven inverse design paradigm is fundamentally transforming materials discovery research by enabling the computational exploration of novel materials with predefined target properties. This review comprehensively synthesizes recent progress in applying AI methodologies, such as generative models, reinforcement learning, and diffusion models, to diverse material classes including metals, polymers, and proteins. It particularly highlights key advancements, such as the AI-guided discovery of high-entropy alloys with superior mechanical properties and the de novo design of functional polymers and protein-based biomaterials. Furthermore, major remaining challenges are discussed, including the computational-to-experimental validation gap, data scarcity, and the need for physically constrained models. Furthermore, this review explores the emerging frontier of Quantum Machine Learning (QML), which holds the promise of overcoming the limitations of classical computing for particularly complex problems in materials simulation. Finally, the integration of these methodologies into fully autonomous laboratories for closed-loop design, synthesis, and characterization is presented as a transformative route to accelerate the materials discovery cycle. 

References

  1. C. Khatua, S. Min, H. J. Jung, J. E. Shin, N. Li, I. Jun, H. W. Liu, G. Bae, H. Choi, and M. J. Ko, “In situ magnetic control of macroscale nanoligand density regulates the adhesion and differentiation of stem cells,” Nano letters, vol. 20, no. 6, pp. 4188-4196, 2020. https://doi.org/10.1021/acs.nanolett.0c00559
  2. H. Choi, G. Bae, C. Khatua, S. Min, H. J. Jung, N. Li, I. Jun, H. W. Liu, Y. Cho, and K. H. Na, “Remote Manipulation of Slidable Nano‐Ligand Switch Regulates the Adhesion and Regenerative Polarization of Macrophages,” Advanced Functional Materials, vol. 30, no. 35, pp. 2001446, 2020. https://doi.org/10.1002/adfm.202001446
  3. T. Yoon, H. Shin, W. Park, Y. Kim, and S. Na, “Biochemical mechanism involved in the enhancement of the Young's modulus of silk by the SpiCE protein,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 143, pp. 105878, 2023. https://doi.org/10.1016/j.jmbbm.2023.105878
  4. B. Shin, S. Park, I. Park, H. Shin, K. Bang, S. Kim, and K. Y. Hwang, “Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4,” International Journal of Molecular Sciences, vol. 26, no. 15, pp. 7584, 2025. https://doi.org/10.3390/ijms26157584
  5. H. Shin, T. Yoon, W. Park, J. You, and S. Na, “Unraveling the Mechanical Property Decrease of Electrospun Spider Silk: A Molecular Dynamics Simulation Study,” ACS Applied Bio Materials, vol. 7, no. 3, pp. 1968-1975, 2024. https://doi.org/10.1021/acsabm.4c00046
  6. S.-J. Kang, and H. Shin, “Amino acid sequence-based IDR classification using ensemble machine learning and quantum neural networks,” Computational Biology and Chemistry, pp. 108480, 2025. https://doi.org/10.1016/j.compbiolchem.2025.108480
  7. H. Shin, T. Yoon, J. You, and S. Na, “A study of forecasting the Nephila clavipes silk fiber's ultimate tensile strength using machine learning strategies,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 157, pp. 106643, 2024. https://doi.org/10.1016/j.jmbbm.2024.106643
  8. X. Zhao, S. Zhang, T. Zhang, Y. Cao, and J. Liu, “A small-scale data driven and graph neural network based toxicity prediction method of compounds,” Computational Biology and Chemistry, vol. 117, pp. 108393, 2025. https://doi.org/10.1016/j.compbiolchem.2025.108393
  9. W.-H. Hui, Y.-L. Chen, and S.-W. Chang, “GraphLOGIC: Lethality prediction of osteogenesis imperfecta on type I collagen by a mechanics-informed graph neural network,” International Journal of Biological Macromolecules, vol. 291, pp. 139001, 2025. https://doi.org/10.1016/j.ijbiomac.2024.139001
  10. S. Chen, W. Li, X. Zhao, M. Li, T. Zhao, G. Zheng, W. Cao, and C. Qiao, “Application of explainable machine learning in the production of pullulan by Aureobasidium pullulans CGMCCNO. 7055,” International Journal of Biological Macromolecules, vol. 308, pp. 142374, 2025. https://doi.org/10.1016/j.ijbiomac.2025.142374
  11. A. Salimi, J. H. Jang, and J. Y. Lee, “Leveraging attention-enhanced variational autoencoders: Novel approach for investigating latent space of aptamer sequences,” International Journal of Biological Macromolecules, vol. 255, pp. 127884, 2024. https://doi.org/10.1016/j.ijbiomac.2023.127884
  12. D. S. K. Nayak, R. Das, S. K. Sahoo, and T. Swarnkar, “ARGai 1.0: A GAN augmented in silico approach for identifying resistant genes and strains in E. coli using vision transformer,” Computational Biology and Chemistry, vol. 115, pp. 108342, 2025. https://doi.org/10.1016/j.compbiolchem.2025.108342
  13. T. Voitsitskyi, V. Bdzhola, R. Stratiichuk, I. Koleiev, Z. Ostrovsky, V. Vozniak, I. Khropachov, P. Henitsoi, L. Popryho, and R. Zhytar, “Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets,” RSC advances, vol. 14, no. 2, pp. 1341-1353, 2024. https://doi.org/10.1039/D3RA08147H
  14. S. Wang, Y. Zhao, J. Li, L. Zhang, F. Yan, C. Wang, L. Shi, X. Zhang, and M. Zhang, “Computational Discovery of RSV Pre-F Inhibitors via Reinforcement Learning-Driven ab Initio Design from Natural Fragment Libraries,” Computational Biology and Chemistry, pp. 108553, 2025. https://doi.org/10.1016/j.compbiolchem.2025.108553
  15. A. Ebrahimian, H. Mohammadi, and N. Maftoon, “Material characterization of human middle ear using machine-learning-based surrogate models,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 153, pp. 106478, 2024. https://doi.org/10.1016/j.jmbbm.2024.106478
  16. L. Meng, L. Wei, and R. Wu, “MVGNN-PPIS: A novel multi-view graph neural network for protein-protein interaction sites prediction based on Alphafold3-predicted structures and transfer learning,” International Journal of Biological Macromolecules, vol. 300, pp. 140096, 2025. https://doi.org/10.1016/j.ijbiomac.2025.140096
  17. K. Luo, J. Zhao, Y. Wang, J. Li, J. Wen, J. Liang, H. Soekmadji, and S. Liao, “Physics-informed neural networks for PDE problems: a comprehensive review,” Artificial Intelligence Review, vol. 58, no. 10, pp. 1-43, 2025. https://doi.org/10.1007/s10462-025-11322-7
  18. A. Uttarkar, and V. Niranjan, “Quantum synergy in peptide folding: A comparative study of CVaR-variational quantum eigensolver and molecular dynamics simulation,” International Journal of Biological Macromolecules, vol. 273, pp. 133033, 2024. https://doi.org/10.1016/j.ijbiomac.2024.133033
  19. [1] S. Kocabay, E. Acar, S. Memiş, I. İ. Taşkın, M. R. Sever, and R. Şener, “Prediction of newly synthesized heparin mimic’s effects as heparanase inhibitor in cancer treatments via variational quantum neural networks,” Computational Biology and Chemistry, vol. 118, pp. 108476, 2025.
  20. https://doi.org/10.1016/j.compbiolchem.2025.108476
  21. [2] C. Chu, A. Hastak, and F. Chen, "LSTM-QGAN: Scalable NISQ Generative Adversarial Network." pp. 1-5.
  22. H. Shin, T. Yoon, and S. Yoon, “Fatigue life predictor: predicting fatigue life of metallic material using LSTM with a contextual attention model,” RSC advances, vol. 15, no. 20, pp. 15781-15795, 2025. https://doi.org/10.1039/D5RA01578B
  23. Y. Sohail, C. Zhang, D. Xue, J. Zhang, D. Zhang, S. Gao, Y. Yang, X. Fan, H. Zhang, and G. Liu, “Machine-learning design of ductile FeNiCoAlTa alloys with high strength,” Nature, pp. 1-6, 2025. https://doi.org/10.1038/s41586-025-09160-2
  24. R. S. Madsen, M. Stepniewska, Y. Yang, A. Qiao, W. M. Winters, C. Zhou, J. König, J. C. Mauro, and Y. Yue, “Mixed metal node effect in zeolitic imidazolate frameworks,” RSC advances, vol. 12, no. 17, pp. 10815-10824, 2022. https://doi.org/10.1039/D2RA00744D
  25. M. Zhou, J. He, X. Liu, J. Huang, J. Zhang, J. Li, X. Huang, and Q. Guo, “Affinity prediction of inhibitor-kinase based on mixture of experts enhanced by multimodal feature semantic analysis,” International Journal of Biological Macromolecules, pp. 146324, 2025. https://doi.org/10.1016/j.ijbiomac.2025.146324
  26. Z. Huang, X. Weng, M. Igl, Y. Chen, Y. Cao, B. Ivanovic, M. Pavone, and C. Lv, “Gen-drive: Enhancing diffusion generative driving policies with reward modeling and reinforcement learning fine-tuning,” arXiv preprint arXiv: 2410. 05582, 2024. https://doi.org/10.1109/ICRA55743.2025.11127286
  27. A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White, and P. Schwaller, “Augmenting large language models with chemistry tools,” Nature Machine Intelligence, vol. 6, no. 5, pp. 525-535, 2024. https://doi.org/10.1038/s42256-024-00832-8
  28. J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A. J. Ballard, and J. Bambrick, “Accurate structure prediction of biomolecular interactions with AlphaFold 3,” Nature, vol. 630, no. 8016, pp. 493-500, 2024. https://doi.org/10.1038/s41586-024-07487-w
  29. S.-J. Kang, and H. Shin, “Biophysical mechanisms of spider-silk constituting element–induced stick-slip behavior and hydrogen bond regeneration for high toughness in silk fibers,” International Journal of Biological Macromolecules, pp. 147027, 2025. https://doi.org/10.1016/j.ijbiomac.2025.147027
  30. [3] N. Szymanski, “Automating the Synthesis and Characterization of Inorganic Materials,” University of California, Berkeley, 2024.
  31. C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé, and S. Ueda, “A generative model for inorganic materials design,” Nature, vol. 639, no. 8055, pp. 624-632, 2025. https://doi.org/10.1038/s41586-025-08628-5
  32. F. Strieth-Kalthoff, H. Hao, V. Rathore, J. Derasp, T. Gaudin, N. H. Angello, M. Seifrid, E. Trushina, M. Guy, and J. Liu, “Delocalized, asynchronous, closed-loop discovery of organic laser emitters,” Science, vol. 384, no. 6697, pp. eadk9227, 2024. https://doi.org/10.1126/science.adk9227
  33. T. Dai, S. Vijayakrishnan, F. T. Szczypiński, J.-F. Ayme, E. Simaei, T. Fellowes, R. Clowes, L. Kotopanov, C. E. Shields, and Z. Zhou, “Autonomous mobile robots for exploratory synthetic chemistry,” Nature, vol. 635, no. 8040, pp. 890-897, 2024. https://doi.org/10.1038/s41586-024-08173-7
  34. S. Back, A. Aspuru-Guzik, M. Ceriotti, G. Gryn'ova, B. Grzybowski, G. H. Gu, J. Hein, K. Hippalgaonkar, R. Hormázabal, and Y. Jung, “Accelerated chemical science with AI,” Digital Discovery, vol. 3, no. 1, pp. 23-33, 2024. https://doi.org/10.1039/D3DD00213F
  35. [4] C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, S. Shysheya, J. Crabbé, L. Sun, and J. Smith, “Mattergen: a generative model for inorganic materials design,” arXiv preprint arXiv: 2312. 03687, 2023.
  36. [5] S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, "ACDC: An accuracy-and congestion-aware dynamic traffic control method for networks-on-chip." pp. 630-633.
  37. S. Zhou, J. Li, F. Meng, M. Chen, J. Cao, and X. Li, “Applications of flexible materials in health management assisted by machine learning,” RSC advances, vol. 15, no. 28, pp. 22386-22410, 2025. https://doi.org/10.1039/D5RA02594J
  38. W. Kobayashi, T. Otsuka, Y. K. Wakabayashi, and G. Tei, “Physics-informed Bayesian optimization suitable for extrapolation of materials growth,” npj Computational Materials, vol. 11, no. 1, pp. 36, 2025. https://doi.org/10.1038/s41524-025-01522-8
  39. [6] N. Liu, Y. Fan, X. Zeng, M. Klöwer, L. Zhang, and Y. Yu, “Harnessing the power of neural operators with automatically encoded conservation laws,” arXiv preprint arXiv: 2312. 11176, 2023.
  40. K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, and G. E. Karniadakis, “Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks,” Journal of Nondestructive Evaluation, vol. 39, no. 3, pp. 61, 2020. https://doi.org/10.1007/s10921-020-00705-1
  41. [7] I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula, M. Asta, M. Avaylon, and W. J. Baldwin, “A foundation model for atomistic materials chemistry,” arXiv preprint arXiv: 2401. 00096, 2023.
  42. [8] J. Qi, Z. Jia, M. Liu, W. Zhan, J. Zhang, X. Wen, J. Gan, J. Chen, Q. Liu, and M. D. Ma, “Metascientist: A human-ai synergistic framework for automated mechanical metamaterial design,” arXiv preprint arXiv: 2412. 16270, 2024.
  43. W. Feng, Z. Huang, B. Pan, T. Zhang, Z. Jin, and M. Miao, “Development of oat-derived biomimetic macrocapsules via hierarchically crosslinked polysaccharide matrix,” International Journal of Biological Macromolecules, pp. 147165, 2025. https://doi.org/10.1016/j.ijbiomac.2025.147165
  44. D. A. Karasev, B. N. Sobolev, A. A. Lagunin, D. A. Filimonov, and V. V. Poroikov, “The method predicting interaction between protein targets and small-molecular ligands with the wide applicability domain,” Computational biology and chemistry, vol. 98, pp. 107674, 2022. https://doi.org/10.1016/j.compbiolchem.2022.107674
  45. R. V. Chikhale, H. T. M. Abdelghani, H. Deka, A. D. Pawar, P. C. Patil, and S. Bhowmick, “Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl Carrier Protein Reductase (InhA),” Computational Biology and Chemistry, vol. 110, pp. 108034, 2024. https://doi.org/10.1016/j.compbiolchem.2024.108034
  46. J. Klarak, A. C. M. Brito, L. F. Moreira, F. N. Silva, D. R. Amancio, R. Andok, M. C. F. Oliveira, M. Bardosova, and O. N. Oliveira Jr, “Using network analysis and large-language models to obtain a landscape of the literature on dressing materials for wound healing: The predominance of chitosan and other biomacromolecules: A review,” International journal of biological macromolecules, pp. 141565, 2025. https://doi.org/10.1016/j.ijbiomac.2025.141565
  47. [9] N. P. A. Plan, “National Institute of Standards and Technology (NIST).”
  48. [10] X. Liu, K. Zeng, Z. Luo, Y. Wang, T. Zhao, and Z. Xu, “Fine-Tuning Universal Machine-Learned Interatomic Potentials: A Tutorial on Methods and Applications,” arXiv preprint arXiv: 2506. 21935, 2025.
  49. S. Leontica, F. Tennie, and T. Farrow, “Simulating molecules on a cloud-based 5-qubit IBM-Q universal quantum computer,” Communications Physics, vol. 4, no. 1, pp. 112, 2021. https://doi.org/10.1038/s42005-021-00616-1
  50. Y. Wang, Q. Zeng, J. Wang, Y. Li, and D. Fang, “Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm,” Computer Methods in Applied Mechanics and Engineering, vol. 401, pp. 115571, 2022. https://doi.org/10.1016/j.cma.2022.115571
  51. P. Jiao, J. Mueller, J. R. Raney, X. Zheng, and A. H. Alavi, “Mechanical metamaterials and beyond,” Nature communications, vol. 14, no. 1, pp. 6004, 2023. https://doi.org/10.1038/s41467-023-41679-8
  52. A. L. Ferguson, and K. A. Brown, “Data-driven design and autonomous experimentation in soft and biological materials engineering,” Annual Review of Chemical and Biomolecular Engineering, vol. 13, no. 1, pp. 25-44, 2022. https://doi.org/10.1146/annurev-chembioeng-092120-020803
  53. K. Wang, and A. W. Dowling, “Bayesian optimization for chemical products and functional materials,” Current Opinion in Chemical Engineering, vol. 36, pp. 100728, 2022. https://doi.org/10.1016/j.coche.2021.100728
  54. T. Jarvis, A. M. Mah, R. H. Wang, and M. G. Wilson, “Web-based system navigation database to support equitable access to assistive technology: Usability testing study,” JMIR Formative Research, vol. 6, no. 11, pp. e36949, 2022. https://doi.org/10.2196/36949
  55. G. C. Saha, S. Kumar, A. Kumar, H. Saha, T. Lakshmi, and N. Bhat, “Human-AI collaboration: Exploring interfaces for interactive machine learning,” Tuijin Jishu/Journal of Propulsion Technology, vol. 44, no. 2, pp. 2023, 2023. https://doi.org/10.52783/tjjpt.v44.i2.148
  56. S. Bowman, B. Gu, Y. Qiu, and L. Qiu, “Making of cyanobacteria reinforced PLA composites using vat photopolymerization LCD additive manufacturing for textile accessories applications,” International Journal of Biological Macromolecules, vol. 309, pp. 142910, 2025. https://doi.org/10.1016/j.ijbiomac.2025.142910
  57. F. Ahmed, M. A. Azim, and A. Zubair, “High sensitivity terahertz metamaterial sensor for trace pesticide detection,” RSC advances, vol. 15, no. 26, pp. 20530-20541, 2025. https://doi.org/10.1039/D5RA01143D
  58. T. U. Rehman, L. A. Shah, and H. Yoo, “Bio-inspired hydrogels comprising organic and inorganic components association explored as Bingham precursor solution for extending direct ink writing technique in 3D printing,” International Journal of Biological Macromolecules, pp. 146098, 2025. https://doi.org/10.1016/j.ijbiomac.2025.146098
  59. Q. Zhang, and A. H. Alavi, “Advances in autonomous materials and structures,” Active and Passive Smart Structures and Integrated Systems XVII, vol. 12483, pp. 245-254, 2023. https://doi.org/10.1117/12.2658156
  60. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002. https://doi.org/10.1109/4235.996017
  61. Q. Zhang, and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on evolutionary computation, vol. 11, no. 6, pp. 712-731, 2007. https://doi.org/10.1109/TEVC.2007.892759
  62. C. Khatua, S. Min, H. J. Jung, J. E. Shin, N. Li, I. Jun, H. Liu, G. Bae, H. Choi, M. J. Ko, Y. S. Jeon, Y. J. Kim, J. Lee, M. Ko, G. Shim, H. Shin, S. Lee, S. Chung, Y. K. Kim, J. Song, V. P. Dravid, and H. Kang, "In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells," Nano Letters, vol. 20, no. 6, pp. 4188-4196, 2020. https://doi.org/10.1021/acs.nanolett.0c00559
  63. H. Choi, G. Bae, C. Khatua, S. Min, H. J. Jung, N. Li, I. Jun, H. Liu, Y. Cho, K. Na, M. Ko, H. Shin, Y. H. Kim, S. Chung, J. Song, V. P. Dravid, and H. Kang, "Remote Manipulation of Slidable Nano‐Ligand Switch Regulates the Adhesion and Regenerative Polarization of Macrophages," Advanced Functional Materials, vol. 30, no. 35, pp. 2001446, 2020. https://doi.org/10.1002/adfm.202001446