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FinTechs and Crypto Valuation: A Comparison with Traditional
Assets
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Abstract: Purpose: To show how FinTechs (exchanges, payment apps, neobanks, brokers, custodians) shape
crypto-asset valuation by mediating access, liquidity, settlement, and compliance, and to bridge appraisal logics from
traditional assets to tokenized markets.

Methodology: | extend a multilayer valuation framework with a copula-based interdependence structure to include a
FinTech intermediation layer. Traditional finance factors (L1), crypto-native fundamentals (L2), and sentiment/behavioral
signals (L3) are augmented with FinTech variables, including stablecoin rails, exchange microstructure and outages,
payment-app adoption, and custody/prime-broker collateral usability. Identification relies on interaction terms and
event-style tests around platform launches, fee changes, outages, partnerships, and regulatory actions.

Data: Token-level prices and liquidity measures; exchange depth/spreads and outage logs; stablecoin supply/velocity;
and FinTech adoption proxies (e.g., app downloads/DAU, supported fiat rails, custody features, fee tiers). Regulatory
and platform news provide time stamped events. (Frequency aligned to the main specification.)

Findings: Higher FinTech intensity is associated with faster error-correction after information shocks and stronger
transmission of valuation signals when stablecoin liquidity and exchange depth are high. Outages and funding frictions
increase tail dependence. Adding FinTech terms improves explanatory power and stress-window accuracy without
materially altering baseline coefficients.

Original contribution: The paper makes FinTech intermediation an explicit, testable layer in crypto valuation, linking
platform conditions to price discovery within a transparent, regulation-ready (MiCA/SEC) and ESG-aware framework.
This clarifies how appraisal paradigms from traditional assets extend to crypto when routed through modern FinTech
infrastructure.
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1. INTRODUCTION Cryptocurrencies fundamentally challenge the core
. ] tenets of traditional valuation. With no earnings, cash

This paper addresses a central economic problem: flows, or standardized disclosures, they defy models
the absence of a coherent and widely accepted such as discounted cash flow or

framework for valuing cryptoassets, which generates

return-on-equity-based pricing. However, institutional
persistent uncertainty for investors, regulators, and

allocation to crypto continues to expand despite this

corporate treasurers. The valuation of cryptocurrencies methodological vacuum.
remains particularly problematic due to their lack of
cash flows, opacity, and extreme volatility. Against this backdrop, | pose the following research

question: Can stablecoin-mediated copula structures
extend established valuation frameworks to
decentralized, cash-flow-absent digital assets? Under
what structural and behavioral conditions do they yield
empirically valid results?

This contribution centers on one proposition:
stablecoins provide a natural mediation layer that
stabilizes copula-linked dependence structures,
thereby allowing traditional valuation frameworks to be
meaningfully extended into the crypto domain.

| propose a hybrid valuation model that combines
traditional asset pricing logic with Crypto-native
fundamentals. Built on a multilayer network structure,
the model integrates macroeconomic indicators,
tokenomics (e.g., staking yield, issuance), governance
design, developer activity, and behavioral sentiment.
These layers are dynamically connected via copula
functions, capturing nonlinear dependencies and tail
risks to deliver risk-adjusted, transparent valuations,
even under stress or regime shifts.

A central novelty of my approach is to treat
FinTechs—exchanges, payment processors, neobanks,
brokers, and custodians—as valuation infrastructure.
These platforms govern access, inventory, settlement
speed, and end-investor experience, thereby
conditioning how traditional factors, token
fundamentals, and sentiment get impounded into
prices. | therefore make FinTech intensity an explicit
part of the bridge from legacy appraisal logics to
tokenized assets.

Unlike models that rely on isolated metrics or static

regressions, my framework models interactions across
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NLP, enhancing responsiveness to shifting market
narratives. This design supports dynamic asset
allocation, ESG screening, and regulatory reporting in
accordance with MiCA and FASB standards. As crypto
assets encode protocol-level incentives and
governance risks, | incorporate ESG-aligned inputs,
including staking rewards and energy usage.

Benchmarking against DCF, volatility-based, and
heuristic models (2018-2025), this approach shows
superior predictive accuracy and interpretability.

In redefining valuation logic for tokenized finance, |
offer a framework that meets institutional standards
while preserving the distinctive features of crypto. This
framework translates fragmented signals into a
structured, interoperable format to support clearer
investment decisions and regulatory alignment in a
rapidly evolving digital landscape.

The empirical analysis relies on a panel of
cryptoassets from January 2018 to June 2025, sourced
from CoinMetrics and Glassnode, providing a
sufficiently long horizon to capture multiple market
regimes.

The valuation framework integrates diverse
inputs—macroeconomic  indicators,  Crypto-native
metrics, and behavioral sentiment—via a copula-linked
multilayer network (Figure 1). This Copula Engine
connects three analytical layers:

. Traditional Finance Metrics (e.g., DCF, ROE,
EV/EBITDA)

. Crypto-native Metrics (e.g., staking yields, TVL,
issuance schedules)

i Behavioral and Sentiment Proxies (e.g.,
NLP-based mood indicators, transaction
clustering)

By modeling nonlinear dependencies and joint tail
risks, the engine produces key outputs:

. Valuation Scores
. Risk-Adjusted Metrics
L ESG Alignment

L Regulatory Reporting Indicators

This architecture bridges conventional finance and
decentralized systems by substituting cash flow-based
models with crypto-specific proxies like TVL, which
parallels EBITDA in indicating value retention. The
system’s robustness under volatility and its
compatibility with MICA/SEC standards enable
real-time valuation, ESG screening, and stress testing
within an explainable and integrated framework.

At the core of this architecture are Al-augmented
copula nodes, which serve as dynamic bridges
between these domains. These nodes model
cross-domain dependencies within a multilayer

TRADITIONAL FIRM VALUATION
EBITDABOperating Cash Flow (FCFF), Net Cash Flow (FCFE), DCF
Cost/Income Approaches (Economic and Financial
Margins~EBITDA), ROE, EVA ...

Market Comparables (EV/EBITDA, P/E, P/Book Value ...)

Big Data; AlI-Driven

CRYPTOCURRENCY VALUATION
No EBITDA or Cash Flows; No Voting Rights; Unclear Accounting;
Difficult Business Planning and Market Comparables ...
Alternative Metrics: Tokenomics; TVL; NVT; Staking Yields; Metcalfe’s
power laws, Behavioural Finance; Real Options; On-Chain Analytics ...

Figure 1: Firm Valuation.
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network, enabling the analysis of systemic risk
convergence and enhancing the interpretability of risk
across asset classes.

The model represents a shift from static, linear
valuation methods to adaptive, multidimensional
modeling, crucial for analysts, asset managers, and
regulators in today’s hybrid financial environment. By
linking macro-financial, tokenomic, and behavioral data,

the copula structure supports layered risk
decomposition, ESG alignment, and structured
regulatory compliance under MICA and SEC
frameworks.

By situating this analysis in the context of the value
relevance literature, | build on prior studies that assess
whether accounting measures convey information
useful for valuation. This framework extends this strand
to the cryptoasset domain, highlighting the role of
hybrid financial, behavioral, and ESG factors.

In summary, the paper contributes by (i) formulating
a novel valuation framework that uses stablecoins as a
mediation layer to extend traditional models into the
crypto domain, (ii) embedding financial, behavioural,
and ESG factors within a copula-based multilayer
network, (iii) providing empirical validation using daily
data from 2018-2025 with transparent calibration,
robustness, and replication protocols, and (iv)
demonstrating the framework’s practical relevance for
valuation, regulation, and institutional portfolio
allocation. | demonstrate that incorporating stablecoins
as conditioning variables in copula-based dependency
structures  significantly improves cryptocurrency
valuation accuracy by providing a stable anchor that
bridges traditional finance and Crypto-native metrics.

FinTechs affect crypto valuation through four
channels: (i) Access & Distribution (user acquisition,
KYC/onboarding frictions, app store presence); (ii)
Liquidity & Funding (order-book depth, maker/taker fee
tiers, leverage availability, staking/earn programs); (iii)
Settlement & Collateral (stablecoin rails, custody
integrations, rehypothecation limits); and (iv)
Transparency & Compliance (disclosures, RegTech,
outage reporting).

2. LITERATURE REVIEW

Valuing cryptocurrencies requires integrating
traditional finance theories with emerging digital
paradigms. Classical valuation frameworks—such as
those by Damodaran (2018), Fernandez (2019), and
Koller et al. (2025)—offer foundational tools rooted in
discounted cash flow (DCF), relative pricing, and
enterprise metrics (Nissim, 2024), yet often fall short in

explaining token-specific volatility and behavioral
dynamics. Seminal works, such as Fama and French
(1993), Merton (1973), and Myers and Maijluf (1984),
continue to inform the risk profiling of crypto-assets.
Still, they fail to capture endogenous adoption effects
or the features of smart contracts. Despite these
advances, the literature has yet to bridge the
accounting-based value relevance tradition with
cryptoasset valuation, leaving a critical gap that this
paper addresses.

More recent models propose crypto-specific
approaches. Hayes (2017) introduced a
cost-of-production model, while Liu et al. (2021) and
Smith (2021) emphasize accounting-based
determinants of digital asset value. Agarwal (2022) and
Romanchenko et al. (2019) explore fair value under
thin liquidity and fragmented markets. Eshraghi (2023),
Liu (2022), and Soni and Preece (2023) consolidate
current valuation methods, but few embed network
analytics or ESG alignment.

The emergence of tokenomics (Cong et al., 2021;
Catalini & Gans, 2018) marks a shift toward valuation
based on adoption dynamics, governance incentives,
and ecosystem value, further explored in Pantelidis
(2025) and Treiblmaier (2022). These contributions
demonstrate the limits of purely financial metrics in
token valuation.

Meanwhile, digital valuation frameworks proposed
by Moro-Visconti (2022) and Moro-Visconti & Cesaretti
(2023) integrate non-financial factors, including
stakeholder utility, technological maturity, and
sustainability alignment. Their work parallels newer
latent factor models for alternative assets (Cao & van
Beek, 2025; 't Hoen et al., 2025), yet still lacks the
dynamic mispricing structure or multilayer
dependencies necessary to model the complexity of
cryptoassets fully.

In parallel, the network science
literature—especially Barabasi (2016) and Bianconi
(2018)—has inspired the development of valuation

models incorporating multilayer, interdependent
systems. These insights, while underutilized in
mainstream finance, enable novel structural

approaches to modeling information diffusion and
systemic dependencies among digital assets. Similarly,
behavioral and systemic signals (Zhang et al., 2020;
Wingreen et al., 2020) inform the valuation of tokens
beyond rational expectations.

More recently, Al-enhanced valuation tools have
gained traction. Liu and Zhang (2023) propose
explainable Al architectures for cryptocurrency
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prediction, although they do not link these back to
valuation frameworks or tail risk structures. This work
builds on these by explicitly integrating Al within a
multilayer copula system, adding explainability and
robustness. This study fills a literature gap by bridging
the accounting-based value relevance literature with
cryptoasset valuation, introducing a hybrid framework
that integrates financial, behavioral, and ESG factors
through a copula-linked multilayer structure.

This paper makes threefold contributions to the
literature on cryptoasset valuation. | propose a
copula-based multilayer model that captures
cross-token dependencies and tail risks, advancing
beyond the frameworks of Hayes (2017), Cong et al.
(2021), and Liu (2022). | introduce a dynamic
mispricing index that integrates behavioral sentiment
asymmetries, tokenomics fundamentals, and tail
dependencies to identify valuation divergences in real
time. Additionally, | incorporate ESG-adjusted penalties
aligned with MiCA and SEC taxonomies, enhancing
regulatory robustness and incentivizing transparent
governance. My model is benchmarked against ARIMA,
GARCH, and machine learning predictors, utilizing
directional accuracy and RMSE, and supported by
robust backtests and interpretability tools.

This work presents a replicable, empirically
validated, and policy-relevant tool for valuing
cryptocurrencies in complex financial ecosystems. In
particular, | extend the value relevance tradition into the
crypto domain by operationalizing stablecoins as
anchors of cross-domain dependence, a role
unexplored in prior valuation models.

3. WHY TRADITIONAL VALUATION FAILS—AND
HOW TO BRIDGE IT

Traditional valuation pillars—discounted cash flow
(DCF), market  multiples, and  asset-based
methods—break down for most cryptoassets. With no
contractual cash flows, no defensible terminal values,
and unstable discount rates, DCF collapses to a zero
valuation for non-cash-generating tokens even as
market prices remain strictly positive, exposing a
structural valuation gap. Multiples require earnings and
book value that tokens lack or report inconsistently,
and asset-based approaches struggle because tokens
rarely represent enforceable claims on tangible assets
or residual cash flows. Heterogeneous IFRS
classifications (e.g., IAS 2 vs. IAS 38 vs. IFRS 9)
further impair comparability and fair-value visibility,
reinforcing why legacy accounting and finance tools
cannot be applied naively to crypto.

A pragmatic bridge is to map traditional drivers into
Crypto-native proxies and then add layers that capture
what makes tokens valuable. At the
traditional-to-crypto interface, protocol fees and staking
rewards stand in for earnings; revenue-to-TVL
approximates ROE; and locked collateral plus treasury
reserves substitute for book value. A fundamentals
layer adds network and tokenomic drivers (TVL, active
addresses, on-chain volume, issuance, developer
activity), while a behavioral layer incorporates
sentiment, participation bursts, momentum, and
volatility clustering. These mappings retain the
economic intuition of traditional valuation while
respecting token design heterogeneity and on-chain
observables.

Table 1 summarizes these

differences and innovations.

methodological

To integrate these heterogeneous signals, | employ
a copula-linked, multilayer architecture that models
nonlinear and tail-dependent relationships across
layers. Stablecoins act as conditioning variables that
dampen extreme co-movement and improve
dependence stability, yielding more reliable fair-value
signals and a tractable mispricing index. The result is
an interpretable, regulation-aligned framework that
preserves familiar factor logic, extends it with
Crypto-native and behavioral data, and produces
auditable outputs for risk management, portfolio
construction, and disclosure.

The bridge | propose is not only conceptual (factors
vs tokenomics) but also institutional: FinTech
intermediation is the conduit through which valuation
information flows. Modeling this conduit makes the
pricing kernel state-dependent on platform conditions,
resolving part of the “cash-flow-absent” critique by
tracing value to distribution, collateral usability, and
programmable yield access.

4. METHODS

To operationalize the theoretical innovations and
empirical insights discussed in the previous sections,
this part of the paper presents a dual-pronged
methodological framework. Section 5.1 introduces a
multilayer econometric model designed to capture the
complex and nonlinear nature of crypto asset valuation.
In contrast, Section 5.2 extends this structure into a
pricing framework rooted in modern asset pricing
theory. Together, these models aim to bridge traditional
financial metrics, Crypto-native fundamentals, and
behavioral signals through an  Al-enhanced,
copula-based architecture.
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Table 1:

Comparative Traditional vs. Crypto Valuation Methods

Traditional
Valuation Method

Applicability to
Cryptocurrencies

Structural Limitations in Crypto
Context

Innovative Bridging Solutions (Al,
Networks, Game Theory, etc.)

Discounted Cash
Flow (DCF)

Applicable in income-generating
DeFi protocols with transparent
staking rewards or protocol fees.

Cryptos lack stable, forecastable cash
flows and a clear terminal value.
Discount rates are subjective and

sensitive to market swings.

Stochastic simulation of token flows;
Al-calibrated volatility and discount
factors; gamified incentive modeling and
regime-switching scenarios.

Market Multiples
(P/E, EV/IEBITDA,
P/B)

Rarely usable due to the
absence of earnings or book
value. However, peer analysis is
used informally in ecosystems
like Layer 1 or DeFi.

No EBITDA, net income, or equity
base; peer selection lacks
comparability, and results are often
skewed by hype.

On-chain equivalents to EV/EBITDA
using TVL, active users, transaction
volumes, and Al-powered clustering of
protocol similarities.

EBITDA - Centric
Valuation

Central to traditional firm
valuation as a proxy for
operational efficiency, internal
financing, and cross-firm
comparability.

No EBITDA equivalent in crypto; the
absence of income statements and
standardized capex/opex undermines
firm-level financial modeling.

Tokenomics-based proxies, such as
Total Value Locked (TVL),
protocol-generated fees, and adjusted
staking yields, are mapped into network
valuation graphs.

Net Asset Value
(NAV) / Sum - of -
the - Parts (SOTP)

Applicable only to asset-backed
or tokenized real-world assets
(RWA\) projects. Not usable for

native tokens.

There are no tangible assets; the
valuation of digital assets, IP, or
open-source code is ambiguous and
highly context-specific.

Protocol-level NAV via audit trails,
reserve proof, smart contract fee
tracking; SOTP mimicked by
decomposing token utility, governance,
and reward functions.

Comparative
Accounting /
Balance Sheet
Valuation

Impractical due to the absence
of standard audited financials,
balance sheets, or
accrual-based performance
indicators.

Different IFRS classification (IAS 2 vs.
IAS 38); no fair value updates; impairs
comparability and hinders financial
integration.

Decentralized accounting frameworks,
proof-of-reserve systems, open-source
audit records, and algorithmic
transparency scoring.

Real Options
Valuation

Theoretically valid for tokens

with strategic flexibility (e.g.,

governance tokens, modular
blockchains).

Parameters like volatility or strike price
are unstable; a lack of structured
project roadmaps reduces reliability.

Scenario-based token pricing trees,
Al-trained option surfaces, and
real-option frameworks enhanced by
governance game modeling.

Comparable
Transactions /
Precedent Sales

Used for NFTs and early-stage
token investments. Sometimes
used for secondary market
benchmarks.

Pricing is often manipulated,
non-transparent, and extremely
volatile, with a low volume of
comparable deals.

ML - enhanced sale history modeling,
sentiment filters for bubble detection,
on-chain price oracles, and rarity
scoring.

Income / Residual
Income Models
(EVA, RI)

Essential in traditional firm
valuation to measure value
creation beyond capital costs.

Crypto protocols lack reliable
definitions of net income or capital
base; the cost of capital is undefined in
decentralized environments.

Energy-adjusted residuals, stakeholder
return surplus analysis, and Al-inferred
EVA based on token flows and
codebase productivity.

The methodology is restructured to emphasize
identification tests and econometric rigor. | describe
three components:

1. Estimating copula family and vine structure with
stablecoin mediation.
2. Forecast comparison tests using Diebold—

Mariano statistics to assess predictive accuracy

against benchmark models (DCC-GARCH,
ARIMA, ML regressors).
3. Strategy significance evaluation with Superior

Predictive Ability (SPA) tests, ensuring that
trading results are not artifacts of data mining.

Identification uses (a) event studies around FinTech
shocks (exchange outages, fee schedule changes,
product launches/withdrawals, large partnerships), (b)
DiD contrasting tokens with high vs low platform
integration, and (c) instrumental timing via
region-specific rollouts. | preserve all baseline

estimates; FinTech terms enter as interactions to test
incremental explanatory power.

| further incorporate transaction costs, turnover,
slippage, and borrow constraints into portfolio
evaluations, and perform ablation studies to isolate the
incremental contribution of stablecoins, sentiment, and
governance layers.

Overall, the methodological framework integrates
financial, behavioral, and ESG factors within a
transparent  copula-based  multilayer  structure,
providing a rigorous foundation for the empirical
analysis that follows.

4.1. Multilayer Econometric Framework

V_total = a-fi(x1) + B-fa(xz) + y'Cov_C(xyq, Xz), a+ B +y
=1(2)

M ={G,, G, C} (1)
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I model crypto valuation with a three-layer
dependency structure that captures nonlinear
spillovers and tail risk (see Figure 2 for the pipeline).
The layers are:

. Traditional finance (L1): ROE, EV/EBITDA,
DCF-style proxies, ESG scores.

. Crypto-native (L2): issuance/staking vyield,
validator concentration, TVL, developer activity.

sentiment
churn/flow

. Behavioral (L3): NLP
(Twitter/Reddit/Discord), on-chain
anomalies, volatility bursts.

Layer indicators are standardized and fitted with
flexible marginals (e.g., skewed-t, generalized beta).
Cross-layer dependence is modeled with Regular-Vine
copulas (Gaussian, t, Clayton), which accommodate
asymmetric tail co-movements during regime shifts.

| define the multilayer system as
M = {Gy,G,, C} (1)

where G;and G,are the L1/L2(+L3) networks and Cis
the cross-domain copula matrix. Let x, € R® and
x, € R™ be PCA-compressed node vectors. The
composite valuation is

Vo = @ f1(x1) + B f2(x3) + ¥y Cove(xy,x2),a + B+y =1,
(2)

with f, f,estimated via ridge projections and Cov.the
copula-enhanced covariance.

| use rolling 180-day windows (30-day step); select
marginals and pair-copulas by AIC; and tune weights
by time-series cross-validation. Benchmarks are CAPM,
DCC-GARCH, and PCA regressions. Out-of-sample
accuracy is assessed with RMSE/MAE, 5%-tail loss,
and directional accuracy.

4.2. Crypto Asset Pricing Framework

A unified theoretical and empirical framework for
valuing crypto-assets, extending Merton’s
Intertemporal Capital Asset Pricing Model (ICAPM) and
Fama-French multifactor models into a multilayer
network (MLN) tailored to digital markets. In this
structure, each layer reflects a distinct priced source of
risk:  macroeconomic fundamentals, token-native
structures, behavioral signals, and systemic
co-dependencies.

Expected returns are dynamically linked to macro
drivers (e.g., real rates, global liquidity), crypto
fundamentals (e.g., staking yields, total value locked),
and behavioral sentiment (e.g., Reddit momentum,

wallet dispersion). These features are compressed via
Principal Component Analysis (PCA) into orthogonal
mimicking portfolios.  Traditional asset pricing
constructs are reinterpreted in a tokenized context:
TVL reflects size, staking returns proxy value,
sentiment captures momentum, and wallet dispersion
proxies liquidity risk.

The expected return for token i at time t is
expressed as:

E[Rit] = Birfie + Bizfae + ... + Birfi + & (3)

Where fi; represents PCA-derived latent risk factors,
and Bik are time-varying loadings estimated via ridge
regression to mitigate overfitting. Dependencies across
layers are modeled using copula functions. Let X =
(X4, ..., X_d) be standardized valuation features. The
joint distribution is captured by:

P(X1 £ Xq, ..., X_d £ x_d) = C(Fy(xy), ..., F_d(x_d))

(4)
Equation (4) applies Sklar's Theorem to split the
joint distribution into marginal behaviors and a copula C,

isolating dependencies across tokens (see Nelsen,
2006).

| employ a t-copula with density:

cuy, ..., ud;, %, v) = [(v + d)/2 |/
(C(v/2)(vm)Md/2}Z|M1/2D)] % [1 + (227 2)IV]A(-(v + d)/2)
(5)

Where zi = t7'v(ui), Z is the correlation matrix, and v
denotes degrees of freedom. Equation (5) defines the
t-copula density, which models joint extreme movements
across tokens. By transforming uniform inputs u; into
t-distributed values zi, it captures heavy tails and
nonlinear dependencies, which are crucial for stress
scenarios and systemic risk analysis.

| further define the Mispricing Index to quantify
valuation discrepancies:

M_it = (P_it- V_it)/ V_it 6)

Where P_it is the market price, and V_it is the model
implied fair value. The index flags inefficiencies,
governance shocks, or speculative distortions.
Equation (6) defines the Mispricing Index, which
measures the extent to which a token's market price
deviates from its model-implied fair value. A positive
value signals overvaluation; a negative one suggests
undervaluation, highlighting potential inefficiencies or
speculative behavior.

To evaluate the predictive power, | sort tokens daily
into deciles based on mispricing values. A long-short
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strategy—buying the most undervalued decile and
shorting the most overvalued—is implemented. |
compute the Sharpe ratio, Jensen’s alpha, and
drawdown to assess their economic significance.
Cross-sectional regressions validate significance:

les1 = Q¢ + B MPic + yi-Controlsic + €ie (7)

Where future returns rj, .1 are regressed on current
mispricing MPi; and controls (volatility, lagged returns,
market cap). Equation (7) tests if mispricing predicts
future returns. A significant B; indicates that tokens with
higher mispricing today tend to yield higher (or lower)
returns tomorrow, confirming the index’s predictive
power beyond standard controls.

This MLN-based ICAPM framework adapts
seamlessly to ESG metrics, new regulations (e.g.,
MiCA), and cross-layer contagion. It offers real-time
valuation insights with transparent explainability for
investors, regulators, and compliance systems.

Having established the theoretical modeling
framework, | now detail the estimation and validation
pipeline that operationalizes the proposed approach
and ensures methodological transparency.

4.3. Estimation and Validation Pipeline

To ensure methodological transparency and
replicability, | outline the complete sequence of steps
used to calibrate, estimate, and validate the proposed
hybrid copula—network framework. The procedure
integrates distributional fitting, dependence modeling,
factor reduction, and robustness testing. Each stage is
designed to strengthen the internal validity of the
empirical approach and to address the critiques

Table 2: Statistical Procedures

frequently raised against valuation studies in emerging
asset classes such as cryptoassets.

First, marginal distributions are estimated for each
return series using alternative parametric families
(Normal, Student-t, Skew-t), with selection guided by
information criteria (AIC/BIC) and distributional fit tests.
Second, principal component analysis (PCA) is applied
to the set of explanatory variables (financial, behavioral,
and ESG factors). Only those components satisfying
the Kaiser criterion (eigenvalues > 1) and contributing
to a cumulative explained variance above 70% are
retained. This step reduces dimensionality while
preserving the most informative drivers.

Third, the dependence structure is modeled through
a family of candidate copulas (Gaussian, Student-t,
Clayton, Gumbel, Frank). The copula family yielding
the best performance under log-likelihood, AIC, and
Cramér-von Mises criteria is selected. Fourth,
parameters are estimated via maximum likelihood
within a rolling window of 250 daily observations,
updated every 10 days, thereby capturing time-varying
dependence.

Validation proceeds along two dimensions.
Dependence stability is assessed by monitoring
Kendall's 7 and tail-dependence coefficients across
subsamples. Forecast evaluation compares the
out-of-sample performance of the hybrid model against
benchmark specifications (ARIMA-GARCH,
DCC-GARCH, and Random Forest). Cross-validation
(K = 5) is further employed to mitigate overfitting and
confirm generalizability. Finally, robustness checks
involve altering window sizes, copula families, and
explanatory variable subsets to test sensitivity.

Step Procedure

Details / Justification

1. Marginal distribution
fitting

Estimate univariate distributions of return series

Candidate families: Normal, Student-t, Skew-t. Selection
based on AIC/BIC and KS tests.

2. PCA for factor extraction

Apply principal component analysis on
explanatory variables (financial, behavioral, ESG)

Retain components with eigenvalues > 1 and cumulative
variance > 70%.

3. Copula family selection Frank copulas

Fit Gaussian, Student-t, Clayton, Gumbel, and

Selection based on log-likelihood, AIC, and Cramér—von
Mises tests.

4. Parameter estimation likelihood

Calibrate copula parameters via maximum

Rolling window: 250 daily observations; step size = 10
days.

5. Dependence validation
P across subsamples

Check the stability of dependence parameters

Use Kendall's T and tail-dependence coefficients.

6. Forecast evaluation metrics

Out-of-sample forecasts of returns and risk

Benchmark against ARIMA-GARCH, DCC-GARCH, and
Random Forest models.

7. Cross-validation

K-fold cross-validation (K=5) on the training set

Assess out-of-sample accuracy and prevent overfitting.

8. Robustness checks variable subsets

Alternative window sizes, copula families, and

Ensure results are not sensitive to methodological
choices.
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4.4. Sample Construction

| analyze 50 cryptocurrencies selected using three
criteria applied as of January 1, 2018: (i) market
capitalization exceeding $1 billion, ensuring liquidity
and institutional relevance; (i) continuous data
availability across all three analytical layers from
January 2018 through June 2025, totaling 2,738 daily
observations per token; and (iii) sectoral diversity to
capture heterogeneity in token design and use cases.

Table 3 presents the sample composition. The
distribution reflects the crypto ecosystem's evolution:
store-of-value tokens (n=5) include Bitcoin and early
alternatives; DeFi protocols (n=20) dominate as they
emerged post-2019; utility tokens (n=15) represent
platform economies; and governance tokens (n=10)
capture decentralized autonomous organization (DAO)
structures. This stratification enables subsample
analysis by token function while maintaining sufficient
power for pooled estimation.

Data Sources and Quality Controls:

. Price and volume data: CoinGecko API
(primary), cross-validated with CoinMarketCap
and Messari

i On-chain metrics: Glassnode Enterprise plan,

CoinMetrics Network Data Pro

. Protocol fundamentals: DeFiLlama (TVL),
TokenTerminal (revenue and fees), The Block
Data

. Developer activity: GitHub GraphQL API v4,
GitCoin grants data

. Sentiment data: Twitter Academic Research
APl (10,000 tweets/day per token), Reddit
Pushshift API

Table 3: Sample Composition by Token Category

o Traditional finance benchmarks: Federal
Reserve Economic Data (FRED), Bloomberg
Terminal, Yahoo Finance

Quality filters applied: (i) removal of days with
missing data exceeding 5% of observations, (i)
winsorization of extreme values at 1st and 99th
percentiles to mitigate fat-finger errors and flash
crashes, (iii) forward-filling for weekends and holidays
when crypto markets trade continuously but traditional
data sources do not update, and (iv) cross-validation
against multiple data providers with manual audit of
discrepancies exceeding 10%.

4.5. Variable Construction and Measurement

Each analytical layer comprises multiple indicators
transformed into standardized scores before copula
estimation. All variables are constructed at daily
frequency and normalized to zero mean and unit
variance within rolling 180-day windows to ensure
stationarity and comparability across heterogeneous
tokens.

Layer 1: Traditional Finance Metrics

DCF Proxy (V_DCF):

Traditional discounted cash flow analysis requires
future cash flow forecasts and a discount rate. For

cryptocurrencies, | proxy cash flows using protocol fees
and staking rewards:

VDCF,i,t
ZS: E,[Fees,,;] + E;[Staking Rewards_, ;]
- —
= (1+7,) ®8)
Where:

Category n

Representative Tokens

Key Characteristics

Store-of-Value 5 Zcash (ZEC)

Bitcoin (BTC), Litecoin (LTC), Bitcoin Cash (BCH), Monero (XMR),

Fixed/predictable supply, minimal smart
contract functionality, high market cap

DeFi Protocols 20

Ethereum (ETH), Uniswap (UNI), Aave (AAVE), Maker (MKR),
Curve (CRV), Compound (COMP), SushiSwap (SUSHI), Synthetix
(SNX), Balancer (BAL), Yearn (YFI), Convex (CVX), Frax (FXS),
Lido (LDO), Rocket Pool (RPL), dYdX (DYDX), GMX, Pendle
(PENDLE), Venus (XVS), Radiant (RDNT), Gains Network (GNS)

TVL-dependent, yield-generating,
protocol revenue, governance rights

Utility Tokens 15

Decentraland (MANA)

Chainlink (LINK), Polygon (MATIC), Avalanche (AVAX), Solana
(SOL), Cardano (ADA), Polkadot (DOT), Cosmos (ATOM),
Algorand (ALGO), Tezos (XTZ), VeChain (VET), Theta (THETA),
Basic Attention Token (BAT), Chiliz (CHZ), Enjin (ENJ),

Platform access, transaction fees,
validator staking, ecosystem services

ApeCoin (APE), 1inch (1INCH), Bancor (BNT), Gnosis (GNO),

Voting rights, treasury management,

G°T"§|::22°e 10 | API3, Olympus (OHM), Ribbon Finance (RBN), Badger DAO protocol parameter control, and limited
(BADGER), llluvium (ILV), Merit Circle (MC) cash flows
Total 50 Market cap range: $1.2B - $1,247B

Note: Sample excludes stablecoins (analyzed separately as mediating variables), wrapped tokens (BTC on Ethereum), and privacy coins with insufficient
transparency (except XMR/ZEC with research-accessible data). Market capitalizations as of June 30, 2025.
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. E,[Fees;.,,]= expected protocol fees in year h,
estimated using ARIMA(2,1,2) models fitted on
trailing 365-day data

. E,[Staking Rewards, ] = expected staking

distributions, calculated as current staking yield
x projected staked supply

. ;e = token-specific discount rate = 7, +p; -
MRP + CRP

o 1= 10-year US Treasury yield (time-varying,
from FRED)

o f;= token beta vs. S&P 500, estimated on
252-day rolling windows

o MRP = market risk premium = 5.5% (historical
equity premium, Damodaran 2024)

o CRP = crypto risk premium = 8.0% (calibrated
to match observed volatility differentials vs.
equities)

For tokens without protocol fees (e.g., Bitcoin),
Vperis set to the stock-to-flow model, subsequently
normalized within the layer.

ROE Proxy (ROE_proxy):

Return on equity adapted for crypto:

Protocol Revenue; ;. —Operating Costs; ,

ROEi't - Total Value Locked; ; (9)
Where:
o Protocol Revenue = transaction fees +

liquidation fees + interest income (annualized
from 30-day trailing average)

. Operating Costs = validator/miner rewards +
infrastructure expenses (estimated as 40% of
revenue for PoW, 15% for PoS based on
Glassnode miner revenue data)

e TVL = total dollar value locked in protocol (from
DeFiLlama), used as equity analog

ESG Score (ESG_composite):

Composite index incorporating three dimensions,
each scored 0-100:

1. Energy Intensity (40% weight):

o Proof-of-Work tokens: Annual electricity
consumption (TWh) from Cambridge Bitcoin
Electricity Consumption Index, normalized
inversely (higher consumption — lower score)

o Bitcoin score: 22/100 (138 TWh/year as of
2024)

o Proof-of-Stake tokens: Assigned 85-95/100

based on validator concentration (more
decentralized — higher score)

2. Governance Decentralization (30%
weight):

o Gini coefficient of token holder concentration
(lower Gini — higher score)

o Governance participation rate: % of tokens
voting in recent proposals (higher — higher
score)

o Formula: Gov Score = 100x(1 — Gini)x
\/Participation Rate

3. Transparency (30% weight):

o Public GitHub repositories: Yes = +30 points
o Regular audits: Yes = +25 points

o On-chain treasury visibility: Yes = +25 points
o Regular governance reports: Yes = +20 points

Final ESG score: ESG;, = 0.40xEnergy +
0.30xGovernance + 0.30xTransparency

Volatility-adjusted Momentum (Mom_vol):

60-day cumulative return divided by 60-day realized
volatility, capturing risk-adjusted price trends:

59
Hj:o (1+Ri,t—j)_1

Mom_vol,, = (10)

25252 (Rir—j—R)?
Layer 2: Crypto-native Fundamentals
Staking Yield (Yield_stake):
Annualized return from staking, calculated as a

30-day moving average to smooth transient
fluctuations:

. 1 * Staking Rewards; ;_;
Y|eldl-_t = B (— X365) (11)

Staked Supply; t—j
j=0 '

Data from each protocol's native staking contract,
cross-validated with StakingRewards.com.

Total Value Locked (TVL_log):

Natural logarithm of dollar value locked in protocol,
sourced from DeFiLlama:

TVL_log,, = In (TVL,) (12)

Log transformation addresses right-skewness and
stabilizes variance. For non-DeFi tokens (e.g., Bitcoin),
TVL is set to market capitalization minus circulating
supply held on exchanges.
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Developer Activity (Dev_activity):

Weighted sum of GitHub contributions with
exponential decay for recency:

89
Dev,, = Z e~0015)
j=0
x (Commits,,_; + 0.5 X Issues,,_;
+0.3 X PRs;,_;) (13)

Where decay parameter A=0.015 corresponds to
~50% weight on contributions within the past 45 days.
Data from official project repositories listed in Electric
Capital's Developer Report.

Issuance Rate (Inflation_rate):

Annualized percentage change in circulating supply,
capturing inflationary/deflationary dynamics:

Supply; —SUPPlY; ;365
Supply; 365

Inflation; , = x100 (14)

Negative values indicate deflationary tokenomics
(e.g., Ethereum post-Merge with EIP-1559 burn).

Network Activity (Activity_index):

Principal components of active
transaction count, and transaction volume:

addresses,

Activity, , =
PC1(Active Addresses; ;, Tx Count; ;, Tx Volume; ,)
(15)

PC1 typically explains 75-85% of the variance
across these three metrics.
Layer 3: Behavioral and Sentiment Signals

Sentiment Score (Sent_BERT):

FInBERT-based sentiment analysis on a daily
Twitter sample:

1. Collect 10,000 tweets per token per day
mentioning the token ticker or full name

2. Apply FinBERT fine-tuned on financial text, to
classify sentiment: positive (+1), neutral (0),
negative (-1)

3. Aggregate using volume-weighted average
(tweets with more engagement are weighted
higher):

z}c‘;"l"‘) Sentimentg x(1+1In (Likesy+Retweetsg))
$32090  (1+1In (Likesy +Retweetsy))

Sent;, = (16)

Normalization to [-1, +1] scale, where -1 =

maximally negative, +1 = maximally positive.

Volatility Clustering (Vol_GARCH):

Conditional variance from GARCH(1,1)
specification estimated on 90-day rolling windows:
O-i?t =w+t “Eiz,t—l + Baiz,t—l (17)
where ¢€;, = daily return innovation. Captures

time-varying volatility persistence.
Transaction Clustering (Cluster_coef):

Coefficient of variation in daily transaction counts
over 30-day windows:

SD(Tx Count; t_9.¢)
Mean(Tx Count; t_z9.¢)

Cluster;, = (18)

High values indicate "bursty" transaction patterns
often associated with coordinated trading or wash
trading.

Social Media Momentum (Social_mom):

Rate of change in Reddit mentions and Twitter
volume:
__ Mentions; ;—Mentions; 7

Social_mom, , = Mentons: (19)

Stablecoin Conditioning Variables

These variables mediate cross-layer dependencies
rather than directly entering valuation layers:

Peg Deviation (Peg_dev):

Volume-weighted average price deviation of major
stablecoins from $1.00 parity:

wg X| Py —1.00 |
(20)

Peg_dev, = YseuspT, uspc, DAl

where w,,= market cap weight of stablecoin samong
the three.

Stablecoin Market Cap Growth (SC_growth):

7-day percentage change in aggregate stablecoin
market capitalization:

Xs MCapS,t—ZS MCapS‘t_7
Zs Mcaps,t—7

SC_growth, = (21)

Positive growth indicates capital inflows to crypto
markets; negative suggests outflows.

Cross-Market Arbitrage Spread (Arb_spread):

Price dispersion of USDT across major exchanges:

max (Pyspr,e,r) ~min (PyspT,e,t)

mediane (PyspT,e,t)

Arb_spread, = (22)
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4.6. Copula Specification and Structure

I model dependencies using Regular-Vine (R-vine)
copulas, which decompose high-dimensional
distributions into cascading bivariate copulas. This
approach offers flexibility to capture heterogeneous
dependencies (symmetric, asymmetric, tail-heavy)
across the 27 variables spanning three layers plus
stablecoin mediators.

Vine Construction Algorithm:

The R-vine structure is estimated using a sequential
procedure:

1. Tree 1: For all variable pairs, estimate
Kendall's T and select the maximum spanning
tree connecting variables with the strongest
pairwise dependencies

2. Tree 2-T: Conditionally, build trees based on
partial correlations given previous tree
selections

3. Family Selection: For each edge, test
candidate bivariate copulas (Gaussian,

Student-t, Clayton, Gumbel, Frank, Joe, BB1,
BB7) using AIC

Optimal Structure (simplified representation for 3
layers + stablecoin):

Tree 1:

TVL «—— Protocol_Fees (1 = 0.68, Student-t copula,
v=>5)

Sentiment «—— Social_Momentum (1 = 0.72, Gaussian
copula)

Staking_Yield «—— Inflation_Rate (1 = -0.54, Clayton
copula, rotated)

Tree 2 (conditional on Tree 1):

TVL | Protocol_Fees «—— Dev_Activity (1 = 0.51,
Gumbel copula)

Sentiment | Social_Mom «—— Volatility_ GARCH (1 =
-0.43, Frank copula)

Tree 3 (conditional on Trees 1-2):

TVL | Protocol_Fees, Dev_Activity —— ESG_Score (1
= 0.38, Student-t, v=7)

Sentiment | Social_Mom,
DCF_Proxy (1 = 0.29, Gaussian)

Vol_GARCH ««—

Stablecoin Conditioning:

All  cross-layer
Peg_Deviation node

edges pass through the

Example: (Traditional Layer | stablecoins) «——
(Crypto Layer | stablecoins)

Dependence strength reduced by 35-45% when
conditioning on stablecoins

Parameter Estimation:
For each bivariate copula at edge (i,j)in tree k:

6y = arg max Tt e (Fi(xpe | vg), Fj(xje | 0g); 0)

(23)
Where:
. ¢;;= bivariate copula density function
. F;, F;= empirical marginal CDFs conditional

on conditioning set v,

. T= 180-day rolling window length

. Optimization via the BFGS algorithm with
multiple random starts

Marginal distributions F;are fitted separately using
maximum likelihood:

. Financial metrics:  Skewed  Student-t
distribution (captures asymmetry and heavy
tails)

. Crypto-native metrics: Generalized Beta of

Second Kind (GB2) for bounded variables,
skewed-t for unbounded

. Behavioral metrics: Gaussian for sentiment
scores (approximately normal after
transformation), Student-t for volatility and
clustering metrics

Model Selection Statistics (averaged across all
edges):

. Gaussian copula: Selected in 23% of edges
(low tail dependence contexts)

. Student-t copula: Selected in 41% of edges
(symmetric heavy tails)

. Clayton copula: Selected in 18% of edges
(lower tail dependence)

. Gumbel copula: Selected in 12% of edges
(upper tail dependence)

. Other (Frank, Joe, BB-family): Selected in 6%
of edges

4.7. The Estimated Composite Valuation Model

Integrating all layers through the copula structure
yields the final valuation score:
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Vie=a- fl(Xl,i,t) +pB 'fz(Xz,i,t) +y 'f3(X3,i,t) +4-

C(X1i60 X260 X306 | Se) (24)
Where:
. X,,.= Traditional finance layer variables (5
indicators — 2 PCA factors)
. X,:+ = Crypto-native layer variables (5
indicators — 3 PCA factors)
. X3 ;.= Behavioral layer variables (4 indicators
— 2 PCA factors)
. S; = Stablecoin conditioning variables (3
indicators)

. f1, f>, f3= Ridge regression mappings with L2
penalty 4 = 0.01:

fi(Xji0) = WX, w; = arg min Cei Ve —
wiX; D2+ wl3) (25)

. C(:1S,) = Conditional copula-derived
dependence adjustment capturing nonlinear
interactions

Optimized Layer Weights (via 5-fold time-series
cross-validation):

{a*, By, 6"} = {0.31,0.42,0.27,0.18}

with standard errors (bootstrap, 1,000 iterations): {0.04,
0.05, 0.03, 0.02}

All weights are significant at p < 0.01level.
Interpretation:

i The crypto-native layer dominates (B =
0.42), and on-chain fundamentals are the
most predictive.

. Traditional metrics second (a = 0.31):
DCF-proxies and ESG retain explanatory
power

. Behavioral signals third (y = 0.27):

Sentiment and volatility provide incremental
information

. Copula adjustment material (6 = 0.18):
Nonlinear dependencies and tail risks are
non-negligible

Stablecoin Mediation Effect (y parameters):

The copula structure includes edge-specific
parameters capturing stablecoin conditioning:

t(Layer,, Layer. | Stablecoins)
t ]
= T(Layeri' Layer].)x(l — Vstable)

Estimated stablecoin mediation parameters:

0.37 (SE = 0.05):
dependence by 37%

stablecoins reduce

0.31 (SE = 0.06): 31%

Y Traditional-Behavioral =
reduction

¥ Grypto-Behavioral= 0-42 (SE = 0.04): 42% reduction

Validation:

* In-sample R%=0.61

* Out-of-sample R?(2024-2025) = 0.47
* RMSE (out-of-sample) = 0.067

* Mean Absolute Error = 0.045

5. HYPOTHESIS TESTING

Drawing directly from the literature gaps identified
above, | now set out the following hypotheses.

To evaluate the performance and theoretical
implications of my copula-linked multilayer valuation
model, | formulate a set of empirically testable
hypotheses grounded in the framework's core
components: mispricing detection, nonlinear
dependence, and cross-domain spillovers.

Hypotheses:

. H1: The multilayer copula model significantly
outperforms traditional benchmarks (linear
regression, ARIMA, GARCH, and network
heuristics) in terms of predictive accuracy
(RMSE, MAE, directional accuracy).

. H2: Mispricing residuals are temporally and
cross-sectionally clustered, indicating persistent
inefficiencies across tokens and periods.

. H3: Structural token features—such as staking
yield, governance centralization, and network
activity—systematically explain the magnitudes
and persistence of mispricing.

. H4: Tail risk and contagion are better captured
by the copula-based architecture than by
conventional volatility-based models, particularly
during periods of systemic stress.

. H5: Greater FinTech integration accelerates
price  discovery—shortening error-correction
half-lives, strengthens co-movement with
stablecoin liquidity, and increases sensitivity to
exchange outages and fee-schedule changes.

| perform rolling-window out-of-sample forecasts
(2019-2025) and compare performance across token
categories (e.g., governance, DeFi, utility). Bootstrap
methods assess the stability of copula parameter
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estimates under shifting market regimes. My model
shows superior robustness in turbulent periods—such
as the COVID-19 crash (March 2020) and the FTX
collapse (November 2022)—where traditional models
fail to capture asymmetric tail dependencies and
structural breaks.

The copula-enhanced mispricing index exhibits
significant  clustering, with abnormal residuals
frequently coinciding with key market events (e.g.,
protocol upgrades, regulatory shocks). Cross-sectional
regressions confirm that token-specific
attributes—including validator concentration, staking
incentives, and behavioral sentiment—exert
statistically  significant influence on valuation
discrepancies.

These findings highlight the empirical validity of my
proposed framework. They suggest that real-world
crypto pricing is not fully efficient, especially in the
presence of governance opacity, decentralized
protocol risks, or strong investor sentiment waves. The
model thus provides an operational toolkit for
navigating these anomalies with enhanced predictive
insight and risk calibration.

Empirically, ESG-weighted dependence parameters
shift valuation scores downward for energy-intensive
tokens such as Bitcoin, demonstrating that
sustainability considerations have a tangible and
directional impact on model outputs.

A heatmap is reproduced in Figure 2.

6. RESULTS

Building on the estimation and validation pipeline
outlined in Section 4.3, this section presents the
empirical results. | first report the regression outputs
and dependence measures derived from the copula
calibration, followed by robustness checks and
comparative forecasts against benchmark models. The
objective is to demonstrate not only the internal
consistency of the proposed framework but also its
empirical relevance when applied to cryptoasset
valuation.

Results are presented along four dimensions:

1. Forecast Comparisons — | report Diebold—
Mariano statistics comparing my model against
DCC-GARCH, ARIMA, and ML baselines.

2. Trading Strategy Significance -
Mispricing-based long—short portfolios are
evaluated using SPA tests, incorporating

turnover, slippage, and borrow constraints.

3. Stablecoin Mediation Effects — Conditional
copula estimates with and without stablecoin
variables are compared, highlighting
improvements in Kendall's T and tail coefficients.

4, Ablation Studies — Layer-by-layer removals
(sentiment, stablecoin, governance metrics)
quantify each  component’s  incremental
contribution.

Relative Influence of Price Determinants on Different Crypto Types

Supply Constraints (e.g., Halving, Burns)

Speculation & Hype

Institutional Adoption

Regulation & Legal Clarity

Macro Environment (Rates, USD)

Utility & Use Cases -

Technology Upgrades -

Price Determinants

Network Activity (TXs, Gas, etc.) =

Exchange Listings =

Whale Activity & Liquidity

Geopolitical Risk

5.0

Influence (1 = Low, 5 = High)

Figure 2: Heatmap of Bitcoin Price Determinants. The heatmap shows distinct drivers across crypto types: Bitcoin reacts most to
macro forces and regulation, Ethereum to utility and tech upgrades, Alicoins to mixed fundamentals, and meme coins to pure
speculation. This underscores the need for tailored valuation models.
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The empirical implementation applies this model to
a cross-section of cryptocurrencies, covering different
regimes, volatility clusters, and token structures.

The empirical results are segmented by crypto
asset categories (store-of-value, stablecoins, utility
tokens) and by behavioral layers. The proposed
multilayer model demonstrates a 17% improvement in
directional forecasting accuracy and a 12% increase in
tail-risk  capture compared to DCC-GARCH.
Robustness checks confirm resilience to macro shocks
and regulatory announcements. Visuals in Panel A/B
format display topology changes in network
connectivity before and after market events.

Two complementary empirical strategies to address
the core research question of whether traditional
valuation logic can be systematically adapted to crypto
assets.

Viewed through the FinTech lens, tokens with
higher integration to major platforms exhibit faster
dissipation of pricing errors following information
shocks, consistent with lower frictions on access and
settlement. Conditioning on stablecoin liquidity, this
effect is strongest when exchange-level depth is high
and outages are absent. These patterns rationalize
why FinTech terms improve directional accuracy in
stress windows without materially changing baseline
point estimates.

Interpreting stablecoins as FinTech rails clarifies
their role: they are programmable settlement media
that transmit valuation information across venues and
apps. Hence, stablecoin conditions (float, velocity, peg
stress) should interact with exchange microstructure in
the copula layer to mediate tail dependence.

Sections 6.1 and 6.2 develop and empirically
validate a copula-augmented framework that links
predictive analytics with real-world asset behavior and
investment applications to rigorously address the core
research question: how to value cryptocurrencies in a
multifactor, institutional context.

Together, these two sections offer a unified,
cross-validated perspective: the network model
provides the theoretical and algorithmic core, while the
benchmark-based analysis offers a market-facing
reality check. Their consistency confirms that crypto
valuation requires both internal logic (Section 6.1) and
external validation (Section 6.2).

This dual approach provides a replicable and
interpretable toolkit for financial analysts, asset
managers, and regulators, bridging decentralized
innovation with institutional-grade valuation. The model
not only responds to the volatility and opacity of crypto

assets but also proactively equips professionals with a
risk-aware, multidimensional system ready for dynamic
allocation, stress testing, and regulatory scrutiny.

By embedding empirical robustness, ESG
integration, and a transparent replication package, the
framework sets a reproducible benchmark for future
cryptoasset valuation research.

6.1. The Multilayer Network Model

The empirical results of the Al-augmented
multilayer network model demonstrate its efficacy in
bridging traditional and crypto valuation domains
through the integration of heterogeneous financial,
on-chain, and sentiment indicators.

The model ' is operationalized using real,
reproducible data sourced from leading financial
databases and blockchain analytics platforms. The
analysis focuses on a curated sample of assets
selected to ensure sectoral diversity, market relevance,
and data availability across time and domains.

The dataset was mapped onto the multilayer
network structure M = {G,, G,, C}. Traditional asset
metrics (G,) include DCF valuation, P/E ratio, ROE,
debt/equity, and ESG score. Crypto asset indicators
(G.) include staking yield, TVL, developer commits,
token issuance rate, and on-chain volume. The copula
layer (C) comprises sentiment (e.g., the Fear & Greed
Index), macroeconomic variables (e.g., the Fed rate),
and rolling correlations (e.g., the 30—day correlation
between BTC and NASDAQ). Copulas allow us to
model tail dependencies between indicators across
valuation layers. For instance, they help assess the
likelihood that staking yields drop simultaneously with
sentiment scores, capturing nonlinear contagion effects.

(1)

To empirically test the explanatory potential of the
multilayer  valuation model, | assembled a
representative cross-section of traditional firms and
crypto tokens. The selection was designed to reflect
sectoral diversity, relevance to macroeconomic and
behavioral drivers, and data transparency across
financial and blockchain-native indicators. The
empirical highlights below summarize the dominant
insights emerging from the model calibration.

To align the data structure with the multilayer

' The model is validated using a multi-pronged approach: 1) subsample

stability tests by partitioning the dataset into pre- and post-Ethereum Merge
epochs (pre/post September 2022); 2) out-of-sample forecasting, training on
observations from 2018 through 2024 and testing on early 2025 returns; 3)
copula sensitivity analysis across Gaussian, Student-t, and Clayton copulas; 4)
feature exclusion diagnostics, sequentially removing high-weighted inputs such
as staking yield and ESG signals; 5) bootstrap aggregation via ensemble ridge
regressors to minimize overfitting and improve generalization.
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network model described in Section 5, each variable
was mapped to one of three analytical layers:
traditional finance (G;), Crypto-native fundamentals
(G.), and systemic interdependencies (C). Data were
standardized within each layer and subjected to
Principal Component Analysis (PCA) to extract
dominant features. Correlation analysis, particularly the
co-movement between BTC and NASDAQ, and copula
estimation techniques were wused to quantify
cross-domain dependencies. These values informed
the model's weight estimation through Ridge
regression, enabling the empirical extraction of a, B,
and y coefficients optimized for predictive accuracy.

Table 4 compares a selection of major traditional
firms and prominent crypto assets across various

performance, financial, and development metrics.

Valuation estimates combine discounted cash flow
(DCF) and market capitalization averages. ROE or
staking yield indicates capital efficiency or
crypto-specific returns on investment. Debt/equity
(traditional) or Issuance Rate (crypto) reflects leverage
or token inflation. Average quarterly GitHub metrics
measure developer activity in terms of commits. The
last column includes a proxy for operational efficiency
(TVL for crypto, EBITDA for traditional firms when
available) and sustainability (ESG score or token
governance quality).

A validation of the model and a robustness test are

synthesized in the Supplementary Material.

Table 4: Cross-Domain Valuation Metrics for Traditional Firms and Crypto Assets

Asset/Firm Firm Sector / Avg. ROE / | Debt/Equity or| Dev Activity TVL/ P/E or ESG/
CryptoTypology Valuation | Staking Issuance (Commits EBITDA / NVT | Governance
($B) Yield (%) Rate /Qtr) ESG Ratio Score

Tesla (TSLA) Automotive / Clean Energy 880 17,6 1,5 415 N/A/66 33 66
Apple (AAPL) Consumer Electronics 2400 29,1 1,7 375| N/A/71 29 71
JPMorgan (JPM) Banking 455 14,8 2 205 N/A /78 14 78
Microsoft (MSFT) Software 2550 34,2 1,2 355 N/A/ 84 32 84
Amazon (AMZN) E-commerce 1750 12,3 2,4 400 N/A /75 38 75
Nvidia (NVDA) Semiconductors 1250 27,4 1,6 330/ N/A/76 45 76
Meta (META) Social Media 900 22,7 2,1 295 N/A/73 27 73
Alphabet (GOOGL) Internet Services 1750 28,5 1,3 320 N/A/81 35 81
Bank of America (BAC) Banking 280 11,2 3 195 N/A/68 13 68
ExxonMobil (XOM) Energy 400 18,6 1 175 N/A /70 12 70
Unilever (UL) Consumer Goods 130 21,7 1 150 N/A/78 21 78
Johnson & Johnson (JNJ) Pharmaceuticals 390 25,3 1,2 160 N/A/79 20 79
Visa (V) Financial Services 580 32,1 1,1 210/ N/A/80 31 80
Procter & Gamble (PG) Consumer Goods 390 23 1,3 145 N/A/82 30 82
Samsung Electronics Consumer Electronics 450 18,5 0,9 290 N/A/ 74 25 74
Toyota (TM) Automotive 250 11,7 1,6 180 N/A/76 28 76
Nestlé (NSRGY) Food & Beverage 340 19,4 1,2 160 N/A /83 32 83
Pfizer (PFE) Pharmaceuticals 310 19,4 0,9 180 N/A/77 22 77
Berkshire Hathaway (BRK.A) |Conglomerate 710 12,1 0,6 120 N/A / 85 21 85
Sony (SONY) Consumer Electronics 280 15,6 1,3 160| N/A/72 20 72
Walmart (WMT) Retail 430 18,3 1,1 170 N/A /79 19 79
Intel (INTC) Semiconductors 210 10,7 1,4 220/ N/A/70 18 70
Bitcoin (BTC) Layer 1 / Currency 890 4,1 0,3 2950 25.8/43 55 43
Ethereum (ETH) Layer 1 / Smart Contracts 350 4,6 0,4 2650 12.6/48 50 48
Chainlink (LINK) Oracle 8,5 6,9 0,6 1400 1.8/46 42 46
Solana (SOL) Layer 1 / Smart Contracts 46 5,9 0,7 2550 5.1/47 48 47
Polkadot (DOT) Layer 1/ Interoperability 6,6 5 0,8 1500( 3.1/47 44 47
Avalanche (AVAX) Layer 1 / Smart Contracts 9,5 5,2 0,5 1800 2.0/46 43 46
Uniswap (UNI) DEX / DeFi 5,5 7,8 0,6 1280| 2.5/47 39 47
Aave (AAVE) Lending / DeFi 4,7 9 0,7 1350 2.3/48 37 48
Cosmos (ATOM) Layer O / Interoperability 7,5 4,5 0,9 1475| 1.6/45 36 45
Arbitrum (ARB) Layer 2 / Rollup 3,8 3,6 0,5 1225 1.0/ 44 34 44
Near Protocol (NEAR) Layer 1 / Smart Contracts 5,2 5,8 0,7 1600 1.9/45 40 45
Optimism (OP) Layer 2 / Rollup 3,9 4,2 0,6 1150 1.1/44 38 44
Starknet (STRK) Layer 2 / ZK Rollup 2,7 3,5 04 1050 0.8/43 29 43
Sui (SUI) Layer 1 / Smart Contracts 2,5 3,8 0,5 970 0.6/42 27 42
Toncoin (TON) Layer 1 / Messaging Netwo 7 2,7 0,6 690 0.5/41 24 41
Render (RNDR) Rendering / GPU Network 3,5 7,2 0,6 910 1.3/45 17 45
Arweave (AR) Decentralized Storage 2,1 5,4 0,5 820 0.9/44 23 44
Celestia (TIA) Modular Blockchain 1,8 4,1 0,6 780 0.7 /43 22 43
Frax (FXS) Stablecoin / DeFi 2,4 6,2 0,7 980 1.5/46 30 62
Ethena (ENA) Synthetic Dollar / DeFi 1,9 5,5 0,4 860 1.2 /45 30 62

Sources: Financial metrics from corporate reports and Yahoo Finance; crypto metrics from DeFiLlama, Messari, TokenTerminal, and GitHub APIs.
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Figure 3: Prediction Accuracy Across Models. The chart shows that the Multilayer Al model achieves the lowest error (both
MAPE and RMSE), outperforming traditional models like NVT, Metcalfe, and Linear Regression. This highlights its superior

predictive accuracy in crypto valuation.

Empirically, the ESG-weighted dependence
parameters systematically shift valuation scores
downward for energy-intensive tokens such as Bitcoin,
confirming that sustainability considerations materially
affect output valuations rather than serving as an
auxiliary input.

While model performance metrics are presented for
a representative period, the framework is designed for
use across market cycles. Its structure, which
combines token-specific fundamentals, behavioral
signals, and systemic linkages, is designed to maintain
forecasting relevance in evolving conditions.
Full-period validation from 2018 to 2025 is proposed as
future work to assess long-term robustness and
market-regime sensitivity.

The model is benchmarked against Cao & van Beek
(2025) and 'tHoen et al. (2025). In terms of both

predictive  accuracy and interpretability, the
copula-augmented framework demonstrates clear
advantages in capturing tail dependencies and

behavioral drivers.

Stablecoins stabilize dependencies. As shown in
Table 5, the inclusion of stablecoin flows as
conditioning variables reduces tail dependence by

Table 5: Stablecoin Flows as Conditioning Variables

29.5%, indicating that stablecoins break the extreme
co-movement between traditional and crypto assets
during stress periods.

6.2. Enhancing Crypto Valuation with Empirical
Benchmarks

This section grounds the analysis in empirical
market behavior, complementing the multilayer model's
structural insights. Comparing cumulative returns,
risk-adjusted performance, and macro sensitivity
across crypto assets and traditional benchmarks
demonstrates the practical relevance of the valuation
framework. The results provide financial analysts and
investors with a real-world perspective on volatility
dynamics, portfolio implications, and cross-asset
comparability, thereby reinforcing the model's utility in
applied settings.

Figure 3: refines the cumulative return trajectories
of major cryptocurrencies (BTC, ETH), equity indices
(S&P 500, Nasdaq), and crypto-linked instruments
(GBTC, BITO) over the period from 2020 to April 2025,
starting just before the COVID-19 pandemic. Returns
are normalized to an initial value of 1, allowing for a
clear comparison of performance and volatility between
digital and traditional assets. This view confirms the

Specification RMSE Directional Accuracy Tail Dependence (1)
Full model (with stablecoin conditioning) 0.067 71.2% 0.43
Without a stablecoin layer 0.089 63.8% 0.61
Traditional metrics only 0.127 58.2% 0.68
Improvement from stablecoins 24.7% 11.6% 29.5%

Note: Lower tail dependence indicates more stable, less contagious dependencies.
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Figure 4: Cumulative Returns. Crypto assets exhibit high volatility and sharp reversals, unlike the steady gains of traditional

indices, highlighting their speculative and high-risk profile.

persistent divergence across asset classes and
underscores the importance of diversified risk
frameworks.

In conclusion, the data confirm that crypto assets,
although innovative and high-performing under bullish
scenarios, are structurally more volatile and more
challenging to model than equity indices. Their
valuation requires a hybrid framework that integrates
behavioral signals, technical metrics, and Al-enhanced
dependencies. This study demonstrates that a rigorous,
multidimensional approach to crypto valuation not only
bridges the gap with traditional finance but is essential
for institutional adoption and regulatory alignment.

6.3. Valuation Based on Market Comparables

In traditional finance, firm valuation often relies on
market comparables, using indicators such as
EV/EBITDA, P/E ratios, or price-to-book multiples.
These metrics benchmark a company against similar
peers in terms of earnings capacity, growth
expectations, and sector performance. When it comes
to valuing cryptocurrencies—particularly decentralized
ones like Bitcoin or Ethereum—this comparative logic
faces serious challenges.

A prospective investor assessing where to allocate
capital across asset classes—ranging from digital
assets to gold, US Treasuries, or stock indices—will
naturally consider volatility-adjusted returns, liquidity,
market correlation, and long-term store-of-value
potential. In this context, Bitcoin exhibits significantly
higher volatility and weaker comparability than
traditional financial assets.

One plausible explanation for this extreme volatility
lies in the lack of underlying assets. Unlike traditional
equities, cryptos are not backed by claims on tangible

cash flows or physical reserves. Even gold has intrinsic
utility in industry and jewelry, and sovereign debt is
backed by the capacity for taxation. Bitcoin, on the
other hand, is not pegged to any real-world underlying
asset, unless it is indirectly tied to stablecoins that hold
reserves or are convertible to them.

The absence of a direct linkage to measurable
assets complicates valuation and increases exposure
to fluctuations in investor sentiment, regulatory shocks,
and market conditions. For investors, this implies that
while cryptocurrencies may offer diversification benefits
and speculative upside, they do not align well with
standard valuation models or benchmarking tools used
for traditional assets. Therefore, valuation based on
market comparables must be supplemented by
alternative approaches that incorporate network effects,
scarcity metrics, and behavioral factors.

Findings show that Bitcoin's correlations vary with
market conditions:

. Correlations surge during crises, reflecting
tighter  systemic links and reduced
diversification.

. In the expansion and recovery phases,
correlations decline, suggesting decoupling
and potential contrarian opportunities.

These patterns support the main paper's view of
Bitcoin as a risk amplifier during periods of turmoil and
a hedge in calmer periods®.

% The correlation between Bitcoin and traditional assets varies notably across
macroeconomic regimes. During the expansion period (2016-2019),
correlations were relatively low, with values of 0.25 for the S&P 500, 0.42 for
NASDAQ, 0.34 for the MSCI World Index, and just 0.10 for gold. These
linkages intensified significantly during the 2020 crisis, rising to 0.67 with the
S&P 500, 0.71 with NASDAQ, 0.63 with MSCI World, and 0.32 with
gold—reflecting heightened systemic co-movement under stress. In the
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Simulated Asset Prices (2016-2025): Bitcoin vs. Traditional Indices
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Figure 5: Bitcoin vs. Traditional Indices (2016-2025). Bitcoin exhibits extreme price swings and exponential growth phases,
contrasting with the steadier, more linear trends of traditional assets, such as gold, the S&P 500, and the MSCI World.

Table 6: Risk-Adjusted Performance Metrics of Bitcoin and Traditional Financial Assets®
Mean Volatility | Max Draw- | Sharpe | Correlation | Skew- | Excess Beta vs | Value at Risk [ Conditional
Return (%) (%) down (%) Ratio | with Bitcoin ness | Kurtosis | S&P 500 (5%) (%) VaR (5%) (%)
Bitcoin 85,3 110,5 -83,2 0,65 1 1,8 7,2 1,85 -35,6 -52,1
S&P 500 8,6 15,3 -19,8 0,56 0,48 -0,3 0,5 1 -5,2 -8
Gold 11,4 12,7 -15,5 0,78 0,23 0,1 0,8 0,25 -4,1 -6,7
NASDAQ 14,9 18,9 -25,3 0,66 0,52 -0,4 0,6 1,4 -6,3 -9,5
MSCI World 9,2 13,4 -21,7 0,61 0,41 -0,2 0,4 1,1 -5 -7,9
Figure 5: and Table 6 illustrate the volatility volatility compared to traditional assets from 2016 to

dispersion and Sharpe ratios across major asset
classes, including Bitcoin, Ethereum, gold, the S&P
500, NASDAQ, and 10-year US Treasuries. In contrast,
traditional equities and sovereign bonds exhibit relative
stability, while Bitcoin and Ethereum display
significantly higher fluctuations in their values. These
are not mere statistical anomalies but reflect the
intrinsic nature of cryptocurrencies:
non-cash-flow-generating, speculative instruments
decoupled from traditional fundamentals (see Zhang et
al. (2020). Bitcoin’s return profile diverges sharply from
conventional indices. When incorporated into
diversified portfolios, it can deliver excess returns
(“alpha”) and act as both a diversifier and a high-risk,
high-reward asset.

Table 6 highlights Bitcoin's higher returns and

subsequent recovery phase (2021-2025), correlations declined but remained
elevated compared to pre-crisis levels, settling at 0.39 for the S&P 500, 0.52 for
NASDAQ, 0.46 for MSCI World, and 0.21 for gold. These dynamics underscore
the regime-dependent nature of Bitcoin’s integration with global financial
markets.

% Sources: Yahoo Finance for historical asset data, Coin Market Cap for
comparative performance insights, and Curvo for visual return analyses.

2025. Despite drawdowns, its Sharpe ratio remains
competitive.  Time-varying  correlations  suggest
conditional diversification benefits, while skewness and
kurtosis reflect a distinct, asymmetric return profile.

6.4. Benchmark Performance Summary

This section provides a visual and tabular
comparison of the model's predictive performance
versus benchmark methods, including Ordinary Least
Squares (OLS), Random Forest (RF), and the NVT
Ratio heuristic. Metrics include Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error
(MAPE), and the Sharpe Ratio. Results, shown in
Figure 6 and Table 7, confirm the superior accuracy
and risk-adjusted returns of the copula-augmented
framework.

6.5. Benchmark Comparison Summary

Table 8 provides a direct comparison between my
copula-linked multilayer network model and key
benchmarks from recent literature, including Alexander
et al. (2023; 2024) and Crépelliere et al. (2023). Metrics
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Figure 6: Model Performance Comparison (2020-2025). The Copula-PCA model outperforms all benchmarks, achieving the
lowest RMSE and MAPE, as well as the highest Sharpe ratio, which indicates superior accuracy and risk-adjusted returns.

Table 7: Average Evaluation Metrics by Model. Copula-PCA clearly outperforms all models, achieving the lowest error
metrics and the highest Sharpe ratio, which indicates superior predictive accuracy and risk-return efficiency

Model RMSE MAPE Sharpe
Copula - PCA 0.092 6.8% 1.34
Random Forest 0.118 8.9% 0.91
NVT Ratio 0.131 10.1% 0.74
OLS 0.127 9.7% 0.82

Table 8: Comparison between the copula-linked multilayer network model and key benchmarks. The Copula-Linked
Multilayer Model is the best performer, with the lowest RMSE, highest directional accuracy, lowest tail error,
and fastest convergence

Model RMSE Directional Accuracy Tail Fit Error Time to Convergence
My Copula-Linked Multilayer Model 0.067 71.2% Low Fast (<50 iterations)
GARCH + ARIMA Ensemble 0.082 63.0% High Slow (>100 iterations)
Regime Switching Model 0.089 60.5% High Slow (>120 iterations)
such as Root Mean Square Error (RMSE), Directional resilience, providing a holistic view of financial health. It

Accuracy (DA), Tail-Fit Error (TFE), and helps projects and exchanges comply with evolving
Time-to-Convergence (TTC) are reported for standards by:

comparability. My model consistently outperforms in

RMSE and DA across 50 cryptocurrency tokens, while . Structuring valuation inputs aligned with
also achieving a tighter tail fit and faster convergence. IFRS/GAAP principles

. Supporting the classification of tokens as
securities, commaodities, or hybrids

6.6. Regulatory and Practical Implications

This section examines the regulatory and practical
implications of a multidimensional valuation model that
combines  traditional financial metrics  with

. Justifying TVL-based valuations and yield
disclosures in staking protocols.

Crypto-native metrics. For asset managers, it enables stress testing,
scenario modeling, and ESG-adjusted crypto allocations.
By converting network and behavioral data into financial
analogs, the model narrows the informational gap,
limiting institutional adoption.

By providing traceable and explainable outputs, the
model enhances regulatory transparency, addressing
concerns from entities such as the SEC and ESMA.
Interpretable Al methods reduce opacity and enable

fair value estimation, enhancing model credibility. Portfolio managers can apply the framework for

real-time screening and risk calibration, especially in

Unlike  single-metric  tools, the framework ) ; . .
mixed portfolios of traditional and tokenized assets.

incorporates governance, tokenomics, and ecosystem
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Supervisors may use it to track systemic and
idiosyncratic risks in crypto markets, enabling:

. Detection of correlated vulnerabilities

. Behavioral early warnings (e.g., Vyield
compression, sentiment shifts)

. Macroprudential stress testing across DeFi

ecosystems.

In summary, the model helps reconcile valuation
gaps, fostering convergence between decentralized
assets and regulated finance, and promoting safer and
more coherent market participation.

6.7. Regression Validation

While forecasting performance provides evidence of
predictive accuracy, it remains essential to examine
whether the hybrid framework captures systematic
drivers of value rather than spurious correlations. To
this end, | now turn to regression validation.

To assess the explanatory power and robustness of
the hybrid valuation framework, | estimate a series of
regressions that link the hybrid valuation scores to
financial, behavioral, ESG, and network-related
variables. This validation step ensures that the model
captures systematic drivers of value relevance rather
than spurious correlations, directly addressing
concerns raised in the literature about the empirical
foundations of cryptoasset valuation.

Table 9 reports the regression coefficients,
t-statistics, and p-values for the main explanatory
variables, confirming that financial and behavioral
factors remain robustly significant. At the same time,
ESG and network centrality introduce additional
explanatory dimensions.

The results indicate that financial and behavioral
factors are consistently significant drivers of valuation
scores. Importantly, ESG scores provide an additional
explanatory dimension, capturing sustainability-related
differences across tokens, while network centrality

emerges as a structural determinant of relative value.
This empirical evidence strengthens the credibility of
the hybrid framework and directly addresses prior
critiques about the lack of regression outputs and
robustness checks.

Results remain qualitatively unchanged when
extending the sample to include additional DeFi tokens,
underscoring generalizability.

Robustness checks using alternative window
lengths and copula families yield consistent signs and
significance, underscoring the stability of the results.

In summary, these regression results confirm that
the hybrid valuation framework captures robust,
multidimensional drivers of cryptoasset value,
providing empirical support for its validity and
distinguishing it from prior approaches.

7. STABLECOINS AS A BRIDGE BETWEEN
CRYPTOCURRENCIES AND TRADITIONAL ASSET
VALUATION

Stablecoins occupy a unique position in the digital
asset landscape: while natively embedded in
blockchain ecosystems, their value is explicitly tethered
to real-world reference assets. This dual nature allows
them to act as valuation anchors, providing a credible
connection between decentralized finance (DeFi) and
traditional markets. Their hybrid design addresses a
key limitation in crypto valuation: the absence of cash
flows or tangible comparables.

7.1. Anchoring Value: From Fiat Pegs to NAV

Let P_{SC,t} denote the price of a stablecoin at time
t, pegged to a reference asset A (e.g., USD, EUR, gold).
The theoretical fair value is:

V_{SCit}=06-P_{At}+(1-08) - R_t (26)
Where:
- P_{A.t} = price of the reference asset at time t,

- R_t = reserve-adjusted net asset value of

Table 9: Regression Results: Determinants of Hybrid Valuation Scores

Variable Coefficient t-statistic p-value
Constant 0.124 215 0.032
Financial factor (PCA1) 0.287 4.09 0.000
Behavioural factor (PCA2) -0.142 -2.67 0.008
ESG score -0.095 -2.01 0.045
Network centrality 0.221 3.76 0.000

Adj. R#=0.42, N = 1,500
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collateral,

-0 € [01] =
transparency.

weight reflecting peg credibility and

For fiat-backed stablecoins with full reserves, 6 = 1.
For algorithmic models, 6 < 1, reflecting collateral risk
and volatility.

This formula enables stablecoins to be valued
similarly to money market instruments or NAV-based
funds, providing comparability with established
financial instruments.

7.2. Cross-Domain Correlation Properties

Stablecoins exhibit markedly lower volatility than
major cryptocurrencies, making them valuable
calibration assets in multilayer copula models. Define
relative volatility o as:

o_i=sqrt( (1/(T-1)) Z (r_{i,t} -r*2) (27)
where r_{i,t} is log return of asset i.

7.3. Stablecoins in Multilayer Copula Models

In the three-layer copula structure (Traditional,
Crypto-native, Behavioral), stablecoins serve as
low-volatility anchors. Their integration reduces noise

in dependence estimation.

Let the copula dependence between traditional
assets X and crypto assets Y be:
C(u_X,u_Y;p) = ®_p(PH-1}u_X), P¥-1Hu_Y)) (28)

Where ® p is the Gaussian copula,
stablecoin flows Z as mediators yields:

introducing

C'(u_X,u_Y,u_2) = C( C(u_X,u_Z;p_{XZ}),
C(u_Y,u_zZ;p_{YZ}); p_{XY|Z}) (29)
This three-dimensional copula captures the

conditional stabilizing role of stablecoins.

7.4. Real-World Case Studies

Stablecoins differ in design and collateralization,
which in turn influence their reliability as valuation
anchors. Tables 7 and 8 summarize the main cases.

Stablecoins operationalize three critical functions
that make them bridges between paradigms:

1. NAV-like comparability — linking crypto tokens to
cash-equivalent valuation.

2. Liquidity anchors — stabilizing DeFi protocols and

Table 10: Comparative Metrics of Stablecoins and Other Assets (2020-2025 averages)

Asset Volatility (%) Correlation with S&P500 Sharpe Ratio (rf=2%) Liquidity (Bn$) Stability Index
Bitcoin (BTC) 67.0 0.32 0.42 25 0.1
Ethereum (ETH) 79.0 0.29 0.38 15 0.2
USDT (Tether) 0.7 0.01 0.0 100 0.95
USDC (Circle) 0.4 0.0 0.0 50 0.98
DAI (MakerDAO) 1.2 0.05 0.0 5 0.9
S&P500 Index 19.0 1.0 0.61 200 0.7
Gold (XAU) 15.0 0.22 0.5 150 0.8
Table 11: Stablecoin Case Studies
. . . Regulatory
Stablecoin Peg Type Collateral Basis Transparency Risk Events SR —
. Mix of cash, T-bills, Partial, monthly Reserve opacity concerns Pending MiCA
BT RiatUSD commercial paper attestations (2021-22) classification
. 100% cash + U.S. . . Temporary depeg in March E-money under
Lebe FEGLED Treasuries R, swelis 2023 (SVB collapse) MICA
. On-chain, Collateral stress in Black Hybrid treatment
DAI Crypto-collateralized ETH, USDC, others transparent Thursday 2020 under MiCA
) 100% reserves, . ’
PYUSD Fiat/USD PayPal-managed High No major (yet) E-money token
. Cash + government . - . EU stablecoin,
EUROC Fiat/EUR . High Limited history e-money
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cross-asset arbitrage.

3. Regulatory convergence - aligning token
treatment with IFRS/GAAP and MICA/SEC
frameworks.

In conclusion, stablecoins provide the most

tractable point of entry for applying traditional valuation
models to decentralized assets. Their low volatility,
collateral backing, and accounting comparability make
them indispensable mediators in the hybrid financial
ecosystem.

Taken together, the empirical results confirm that
the proposed framework captures stable and
economically meaningful valuation drivers,
demonstrating both statistical robustness and practical
relevance across different token categories.

7.5. Crypto “Black Friday” (Oct 10-11, 2025) and
Lessons for Valuation

On October 10-11, 2025, the crypto market
experienced its largest recorded deleveraging: more
than $19B of leveraged positions were liquidated within
~24 hours after an unexpected announcement of 100%
US tariffs on Chinese imports and potential export
controls. Bitcoin’s intraday low printed around $105k
with ether down double digits; altcoins fell far more. A
critical microstructure feature of the episode was
venue-specific instability in select markets—most
notably Ethena’s USDe, which briefly traded as low as
~$0.65 on Binance while remaining close to peg on
primary DeFi pools—prompting a targeted user
compensation program.

The event is a test of the stablecoin-mediated,

copula-linked multilayer architecture developed in this
study. At the macro/Traditional layer (G,), the ftariff
shock repriced global risk (rates, trade, equities),
transmitting quickly to token returns. In the
Crypto-native layer (G;), funding and collateral
channels amplified the move via forced liquidations.
The Behavioral layer captured a rapid sentiment swing
and option-hedging pressure. Within the joint
distribution, tail dependence strengthened (higher
Kendall's 1 in the t-copula), and conditional on
stablecoin flows, the cross-asset dependence
structure stabilized, consistent with the mediator role
formalized in Eq. (10).

Using the Mispricing Index M_it = (P_it = Vit) / Vh
manifests as a sharp, transiet dislocation: prices (P_it)
overshot downward relative to model-implied fair value
(V-reverting as liquidity returned. Three valuation
lessons follow: (i) explicitly model leverage and funding
as state variables that modulate tail dependence; (ii)
incorporate venue/oracle risk into Vit and the copula
layer to prevent single-venue price breaks from
contaminating valuation; and (iii) treat stablecoin
design and flow variables as first-order inputs that
improve conditional calibration and robustness of
V_total (Eq. (2)).

8. DISCUSSION

My findings highlight valuation asymmetries
between institutional-grade and retail-driven crypto
assets, with ESG-compliant structures linked to more
stable valuation nodes. This suggests that valuation is
endogenous and path-dependent, with key implications
for MiCA and SEC disclosure standards.

USDe Price Paths Across Venues During Oct 10, 2025 Depeg (UTC)
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Figure 7: Venue-Specific Depeg During the Crash.

Reuters, Oct 10-14, 2025; CoinDesk (October 15, 2025); Binance support posts and follow-up notices (Oct 12—13, 2025). Exact tick-level paths
vary by venue; this figure is an illustrative reconstruction aligned with the paper’s methodology. Reconstructed price paths around the 21:36—
22:16 UTC window reported by Binance. The Binance series exhibits a sharp, short-lived dislocation toward ~$0.65; the Curve series remains
near peg. This demonstrates why venue/oracle risk must be explicitly handled in the stablecoin mediation layer.
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| propose an explainable, Al-driven valuation model
that integrates macroeconomic data, behavioral
sentiment, and Crypto-native metrics within a
copula-enhanced multilayer network. The framework
outperforms traditional benchmarks in predictive
accuracy and risk-adjusted returns, while enabling
tailored applications such as ETF allocation, ESG
screening, and central bank reserve assessments.

The model is modular, interpretable, and dynamically
updated via PCA and copula re-estimation, ensuring
robustness in volatile markets. It supports regulatory
alignment by embedding ESG metrics as quantifiable
valuation drivers and enabling standardized
cross-asset comparisons.

Notably, the mispricing index generated by the
model consistently anticipates structural breaks and
price dislocations in high-yield tokens, revealing latent
arbitrage opportunities. Index values exceeding two
standard deviations often precede TVL drops within 3—
5 days, offering actionable insights for institutional
managers and compliance officers. The model is
capable of real-time operation and replication, making it

Regulators

* Token classification
» Risk monitoring
» Compliance evaluation

suitable for integration into MiCA- or ESMA-aligned
oversight frameworks.

Despite its strengths, the model has limitations.
Data quality varies, real-time adaptation is still evolving,
and inconsistencies in APIs, disclosures, and
governance hinder cross-token comparability. ESG
signals remain non-standardized, which limits their
alignment with traditional benchmarks. The model
currently excludes privacy tokens, NFTs, and
ultra-illiquid assets, though future extensions could
include stablecoins, governance tokens, and
sentiment-sensitive instruments.

While not specifically designed for portfolio
simulation, the model supports risk-adjusted allocation,
real-time screening, and regulatory compliance under
the MICA and SEC frameworks. Its copula-derived
stress dependencies and explainable outputs align with
ESG scoring needs and crypto-asset registration
workflows. Staking yields, governance metrics, and
sentiment indicators help identify potential compliance
risks, particularly for decentralized protocols. By

Institutional
Investors

Portfolio valuation
across traditional and
crypto assets

Multilayer Network
Valuation Engine

Developers

Figure 8: Implications for Investors, Developers, and Regulators.

DeFi Developers

» Token design validation
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» Governance simullations
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aligning with MiCA and SEC disclosure frameworks,
the model is suitable for compliance and risk reporting
purposes.

Future enhancements may include:

. DeFi liquidity pulse metrics for volatile assets

i Cross-token contagion mapping

. Microstructure analytics (e.g., slippage, peg
stability)

i Regional NLP layers and validator behavior
modeling

Methodologically, the model integrates
Fama-French and ICAPM principles into a copula-linked
multilayer structure, combining volatility, on-chain
activity, and behavioral sentiment. PCA decomposition
and FinBERT-based sentiment indices identify key
valuation drivers, while adaptive copula updates and
structural break detection ensure time relevance and
regulatory usability.

Beyond valuation, the model serves as a
governance and compliance tool, enabling:

. ESG scoring based on chain-level

governance

. Policy shock simulation

. Anomaly detection for systemic risk

Though simplifications were necessary for
tractability, they  highlight clear paths for

refinement—such as adding token issuance dynamics,
governance analytics, and regulatory arbitrage
detection—making the framework increasingly robust
for a dynamic crypto-financial environment.

9. CONCLUSION

This paper addresses the fundamental challenge of
valuing cryptocurrencies—assets that lack cash flows,
audited financials, or standardized governance, yet are
central to trillion-dollar markets. | introduce and
empirically validate a copula-linked multilayer network
model that unifies macroeconomic data, tokenomics,
developer activity, and sentiment into an interpretable
valuation framework.

By embedding FinTech intermediation into a
multilayer valuation schema, | show how information
travels from traditional factors and tokenomics to prices
via access, liquidity, settlement, and compliance
channels. The framework remains empirically
grounded and regulation-ready, offering managers and
policymakers a transparent way to monitor how
platform conditions modulate valuation—particularly

around stress. Future extensions can endogenize
platform competition and sustainability metrics, further
aligning crypto-asset appraisal with the
FinTech-and-ESG agenda.

The analysis examines the dynamics of mispricing
across tokens, focusing on tail dependence,
event-driven clustering, and drivers such as staking
yield, governance centralization, and GitHub activity.
Mispricing is particularly pronounced in tokens with
high protocol complexity or illiquidity, exhibiting strong
upper-tail dependence and thematic contagion.

Regression results highlight sentiment and developer
engagement as key predictors of inefficiencies. A
trading strategy based on the top and bottom deciles of
mispricing yields statistically significant alpha,
indicating that the model captures latent value signals
not yet reflected in prices.

Overall, my findings reveal persistent frictions, limits
to arbitrage, and delayed information absorption in
decentralized markets, highlighting the need for
advanced, adaptive valuation tools in crypto finance.

Figure 9: recalls the multilayer network process,
powered by Al (which finds out massive additional
nodes and links).

Between 2018 and 2025, the model outperforms
traditional benchmarks (CAPM, DCC-GARCH, DCF,
ML regressors) by up to 17% in directional accuracy
and 12% in tail risk detection, especially during market
stress. By integrating Crypto-native features—like
staking yields, governance participation, and
TVL—with conventional financial logic, it supports
institutional use in valuation, risk management, and
ESG compliance.

Key contributions are:

1. Theoretical: provide evidence that stablecoins
reduce tail dependence by 39.5% between crypto and
traditional assets, establishing their role as valuation
mediators.

2. Methodological: R-vine copulas with stablecoin
conditioning, validated through ablation studies
showing 33% performance degradation without this
component.

3. Empirical: 7.5-year validation demonstrating 32%
RMSE improvement over benchmarks across multiple
market regimes, including major stress events.

4. Practical: Implementable and audit-ready
(MiCA/SEC); delivers actionable signals (Sharpe 1.34)
and—via a modular, Al-enhanced design—supports
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Figure 9: Multilayer Network process.

dynamic risk, stress tests, and real-time adaptation for
managers, regulators, and policymakers.

While promising, it faces challenges: volatility in
on-chain data, complexity in copula estimation, and
reduced predictive power for illiquid or newly issued
tokens. Future developments should expand to NFTs,
DAOs, cross-chain and privacy-focused assets, while
refining regulatory calibration and data pipelines.

Aligned with MiCA and SEC standards, the model
provides transparent and explainable outputs for ESG
screening, risk disclosure, and crypto asset
classification. It supports institutional pricing,
auditability, and systemic stress forecasting as crypto
evolves into a regulated financial sector (an uncertain
target that will eventually render traditional evaluation
applicable to cryptos). More broadly, the framework
represents a paradigm shift in valuation, embracing
trustless consensus, behavioral dynamics, and
technological credibility as central value drivers. It
reframes valuation as a forward-looking, adaptive
process, critical for navigating the decentralized
finance ecosystem and the evolving digital economy.

In answering my research question, we
demonstrate that stablecoin-mediated copula
structures offer a first tractable pathway for extending
conventional valuation logic to cash-flow-absent tokens,
under empirically validated behavioral and structural
conditions.

The supplementary material contains a full
replication package, available via a private Zenodo
repository (DOI: 10.5281/zen0do.15830790). The
package includes anonymized datasets and a detailed

appendix that ensures complete reproducibility of my
analysis. Specifically, it provides:

1. Token-level mispricing scores and backtesting
results;

AIC-based vine copula selection outputs and
tail-dependence matrices;

3. Hedge fund scenario walkthroughs with
allocation metrics;

ESG compliance scoring
regulatory stress tests;

e

templates and

5. A Jupyter-style notebook pipeline linking input
data to final trading signals;

6. Processed datasets used
analysis;

in the empirical

7. Regression outputs and robustness checks;

©

Annotated code snippets for copula calibration,
PCA extraction, and rolling window validation.

This replication package enables full replication of
the empirical pipeline and facilitates further extensions
by other researchers.
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