Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Fungal Foams from Teak Leaves: Effect of Cold Shock and Species Variation on Growth and Mechanical Strength

DOI:
https://doi.org/10.31875/2410-4701.2025.12.07
Submitted
December 7, 2025
Published
2025-12-29

Abstract

Fungal foams represent sustainable alternatives to synthetic materials, yet optimization of growth and mechanical properties remains challenging. This study evaluated the effects of cold shock treatments at 0 °C for different interval days (3, 5, 7 days) on Pleurotus species including P. djamor, P. florida, and P. sajor-caju cultivated on teak leaves. Mycelial growth rates, mechanical properties (hardness, springiness, resilience), and scanning electron microscopy (SEM) were systematically evaluated. Results demonstrated that 3-day cold shock treatment consistently maximized growth, with P. florida (W3) achieving 1.41 cm/day. Mechanical testing revealed superior performance in 3-day treated samples: P. florida (W3) recorded peak hardness at 7904 g.sec, while springiness and resilience value reached 0.681 and 0.399 respectively for P. sajor-caju (G3) surpassing controls samples. SEM confirmed denser, thicker and intertwined hyphal networks in cold-treated samples, correlating with mechanical properties. These findings establish 3-day cold shock as an effective, non-chemical strategy to enhance fungal foam quality from agricultural residues. 

References

  1. Rungjindamai, N., Trakunjarunkit, K., Posalee, T., & Limpanya, D. (2024). Utilization of agricultural waste for the cultivation of Pleurotus mushrooms in Thailand. Journal of Pure and Applied Microbiology, 18(2), 941-950. https://doi.org/10.22207/JPAM.18.2.07
  2. Miśkiewicz, K., Gendaszewska, D., Sieczyńska, K., et al. (2025). Agri-food wastes as substrates for oyster mushroom (Pleurotus ostreatus) cultivation and their agricultural potential. Scientific Reports, 15, 42617. https://doi.org/10.1038/s41598-025-26843-y
  3. Zakil, F. A., Xuan, L. H., Zaman, N., Alan, N. I., Salahutheen, N. A. A., Sueb, M. S. M., & Isha, R. (2022). Growth performance and mineral analysis of Pleurotus ostreatus from various agricultural wastes mixed with rubber tree sawdust in Malaysia. Bioresource Technology Reports, 17, 100873. https://doi.org/10.1016/j.biteb.2021.100873
  4. Al-Jbouri, Z. S., Alsaady, M. H., & Abdulrazzaq, A. K. (2025). Evaluation of substrate efficacy and supplementation on the growth and productivity of three species of oyster mushrooms. Journal of Ecological Engineering, 26 (5). https://doi.org/10.12911/22998993/200430
  5. Roberts, D. M., Thomas, J. E., Salmon, J. H., Cubeta, M. A., Stapelmann, K., & Gilger, B. C. (2025). Cold atmospheric plasma improves antifungal responsiveness of Aspergillus flavus and Fusarium keratoplasticum conidia and mycelia. PLoS One, 20(8), e0326940. https://doi.org/10.1371/journal.pone.0326940
  6. Majib, N. M., Yaacob, N. D., Ting, S. S., Rohaizad, N. M., & Azizul Rashidi, A. M. (2025). Fungal mycelium-based biofoam composite: A review in growth, properties and application. Progress in Rubber, Plastics and Recycling Technology, 41(1), 91-123. https://doi.org/10.1177/14777606241252702
  7. Yaacob, N. D., Ismail, H., & Rohaizad, N. M. (2023). Effect of different substrates and white Oyster mushroom loading on production of fungal foam. AIP Conference Proceedings, 2703(1). https://doi.org/10.1063/5.0115805
  8. Roshita, I., Nurfazira, K. M. P., Fern, C. S., & Ain, M. N. (2017). Electrical stimulation in white oyster mushroom (Pleurotus florida) production. AIP Conference Proceedings, 1885(1), 020053. https://doi.org/10.1063/1.5002247
  9. Tan, S. S., Majib, N. M., Sam, S. T., & Yaacob, N. D. (2024). Effect of cold exposure on the biofoam produced from different types of oyster mushroom. International Journal of Biomass Utilization and Sustainable Energy, 1. https://doi.org/10.58915/ijbuse.v1.2024.1037
  10. Raman, J., Kim, D., Kim, H., Oh, D., & Shin, H. (2022). Mycofabrication of mycelium-based leather from brown-rot fungi. Journal of Fungi, 8(3), 317. https://doi.org/10.3390/jof8030317
  11. Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397
  12. Sari, K. I., & Rafisa, A. (2023). Chewing and swallowing patterns for different food textures in healthy subjects. International Journal of Dentistry, 2023, 6709350. https://doi.org/10.1155/2023/6709350
  13. Sari, K. I., & Rafisa, A. (2023). Chewing and swallowing patterns for different food textures in healthy subjects. International Journal of Dentistry, 2023, 6709350. https://doi.org/10.1155/2023/6709350
  14. Ibrahim, Roshita., Aziz, K. M., Arshad, A. M., & Hasan, S. M. (2015). Enhancing mushroom production using physical treatments prior to fruiting body formation. Malaysian Applied Biology, 44(1), 69-73.
  15. Verghese, J., Abrams, J., Wang, Y., & Morano, K. A. (2012). Biology of the heat shock response and protein chaperones: budding yeast as a model system. Microbiology and Molecular Biology Reviews, 76(2), 115-158. https://doi.org/10.1128/MMBR.05018-11
  16. Abu Bakar, N., Lau, B. Y. C., González-Aravena, M., et al. (2024). Geographical diversity of proteomic responses to cold stress in the fungal genus Pseudogymnoascus. Microbial Ecology, 87(11). https://doi.org/10.1007/s00248-023-02311-w
  17. Majib, N. M., Sam, S. T., Yaacob, N. D., Rohaizad, N. M., & Tan, W. K. (2023). Characterization of fungal foams from edible mushrooms using different agricultural wastes as substrates for packaging material. Polymers, 15(4), 873. https://doi.org/10.3390/polym15040873
  18. Madusanka, C., Udayanga, D., Nilmini, R., Rajapaksha, S., Hewawasam, C., Manamgoda, D., & Vasco-Correa, J. (2024). A review of recent advances in fungal mycelium-based composites. https://doi.org/10.1007/s43939-024-00084-8
  19. Chen, C., Song, Z., Muhedaner, M., Tao, Y., Zhou, G., & Ye, K. (2025). Influence of mycelial integrity damaged by ultrasonic treatment on product textural properties and in vitro digestibility. Food Chemistry, 463, 141536. https://doi.org/10.1016/j.foodchem.2024.141536
  20. Murugan, S. S. (2020). Mechanical properties of materials: Definition, testing and application. International Journal of Modern Studies in Mechanical Engineering, 6, 28-38.
  21. Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., & De Laet, L. (2019). Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE, 14(7), e0213954. https://doi.org/10.1371/journal.pone.0213954
  22. Boey, J. Y., Lee, C. K., & Tay, G. S. (2022). Factors affecting mechanical properties of reinforced bioplastics: A review. Polymers, 14(18), 3737. https://doi.org/10.3390/polym14183737

Similar Articles

1-10 of 71

You may also start an advanced similarity search for this article.