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Design and Optimization of a 6-DOF Singularity-Free Parallel 
Manipulator 

Guotao Li, Hailin Huang and Bing Li* 

Shenzhen Graduate School, Harbin Institute of Technology, China 
Abstract: A novel six degrees-of-freedom (DOF) singularity-free parallel manipulator (PM) is presented. The PM 
consists of five peripheral limbs and a centre limb, which makes the mechanism have high stiffness and large tilting 
capability . Due to the special architecture, the doubly actuated centre limb of the manipulator could have infinite inverse 
solutions. In every configuration of the end-effector, the manipulator can adapt its centre limb to the position and 
orientation with best dexterities. Targeting for further analysis of the manipulator, its detailed kinematic analysis is 
developed, including the solutions of the inverse position problems, the singularity, the dexterity and the workspace. The 
analysis results show that the proposed manipulator has good performance and thus may be suitable candidate for 
complicated surface machining. 
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1. INTRODUCTION 

Parallel mechanism has been widely applied in the 
modern manufacturing industry due to the many 
advantages such as high stiffness, large load capacity, 
high precision potential and good dynamic 
performance, etc that are profit from the multiple 
closed-loop structure between the fixed platform and 
the moving platform [1]. In addition to 6-DOF Stewart 
platform [2], the parallel mechanisms of Tricept robot 
[3] and Delta robot [4] have been popularly used in 
modern industries. In the kinematic analysis of parallel 
mechanism, the key to the forward kinematic solution is 
to solve the higher-order nonlinear constraint 
equations, which is very complex, while the inverse 
problem is mainly to solve the input of the problem 
according to the position and orientation of the end-
effector of the parallel mechanism. The numerical 
method [5,6] and the analytical approach [7,9] are two 
main methods in the positional analysis of the parallel 
mechanism. Stock and Miller [10] combined the 
manipulability and the workspace as the objective, 
where the weighting factors are used to evaluate the 
relative importance between the two performances, so 
a multi-objective optimization problem is addressed. 

In recent years, many effective design approaches 
have been adopted to improve the PMs’ manufacturing 
capacities, such as workspace size, tilting capacity, 
systematic stiffness, etc [1].  

In this paper, a novel 6-DOF singularity-free parallel 
manipulator is introduced. The proposed parallel 
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manipulator consists of five peripheral limbs with two 
different configurations, and one centre limb with two 
driving pairs. Due to the special architecture, the 
doubly actuated centre limb of the parallel manipulator 
has infinite inverse solutions for a given configuration of 
the end-effector. This makes the manipulator capable 
of achieving continuous singularity-free motion path. 
The design and optimization of the proposed parallel 
manipulator are investigated in details. 

The paper is organized as follows. In section 2 a 
novel parallel manipulator with an adaptable central 
chain is proposed, and the kinematic analysis of the 
parallel manipulator, including the inverse position 
problem and Jacobian matrix problem between the 
input and the output, is presented. The dexterity is 
introduced for the parallel manipulator singularity 
analysis, and the workspace is obtained by the 
dexterity index in Section 3. The conclusions are given 
in Section 4. 

2. MECHANISM SCHEME AND INVERSE 
KINEMATICS 

2.1. Mechanism Scheme 

As shown in Figure 1, the scheme of the parallel 
manipulator proposed in this paper is composed of 
three peripheral PUS (Prismatic-Universal-Spherical 
joints) limbs, two SPU (Spherical-Prismatic-T Universal 
joints) limbs and one PPUU (Prismatic-Prismatic-
Universal-Universal joints) centre limb. The three 
peripheral PUS limbs and two SPU limbs are actuated 
by the five prismatic joints Pi, i=1,2,3,4,5 and the PPUU 
centre limb is actuated by two prismatic joints P6 and 
P7. The notations given in Figure 2 are as follows: each 
PUS and SPU limb i consists of one actuated prismatic 
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joint Pi, one universal joint Ui and other three revolute 
joints whose joint axes are concurrent at a point Ni. U6 
and N6 are the two universal joints of the centre limb; 
Pi, i=1,2,3,…,7 are the seven actuated prismatic joints 
of the manipulator; O-xyz is the fixed coordinate 
system with the X-axis directing to the point A1, and the 
origin O of the fixed coordinate is the centre of the 
pentagon; N1N2N3N4N5 is designed with the pentagon 
shape and the moving coordinate system attached to 
the moving platform is located at the centre of the 
pentagon with x-axis pointing to N1. All the five 
actuated prismatic joints for PUS and SPU limbs can 
travel along the corresponding direction and the two 
actuated prismatic joints P6 and P7 for the PPUU centre 
limb can travel along the x and y directions 
respectively. 

 

Figure 1: Proposed parallel mechanism. 

 

 
Figure 2: Coordinate frames of the mechanism. 

2.2. Position Analysis 

The dimensional parameters of this manipulator are 
given as follows: 
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is at its home configuration, the z! -axis of the moving 
coordinate coincides with z-axis of the fixed coordinate 
and the ,x y! !  directions are parallel to the x, y 
directions, respectively. 

  
(x, y, z,!," ,# )  is used to describe the position and 

orientation of the moving platform with respect to the 
fixed coordinate frame O-xyz, where the triple elements 
(x,y,z) represents the position coordinate of the moving 
platform and the other three elements  

(!," ,# )  
represents the tiling and the torsion angles of the 
moving platform. One choose XYZ fixed angles to 
represent the orientation matrix R describing the 
orientation of the moving coordinate frame to the fixed 
coordinate frame. The resulting rotation matrix in terms 
of these angle coordinates can be given by 
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where S denotes the sinusoidal function and C denotes 
the cosine function. Then the six pivots 
N1,N2,N3,N4,N5,N6 can be expressed as the vector 
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The representations of the key points attached to 
the moving and fixed coordinate system can be 
expressed as follows: 
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in which i=1,2,3,4,5. 

2.3. Inverse kinematics 

The inverse displacement solution is to obtain the 
input position of the driving pairs for the given positions 
and orientations of the moving platform [11]. To obtain 
the input position, One can use the geometric const-
raint equation to obtain the respective loop closure 
equation, and then get the corresponding solution. 
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As for the PUS chains, using the geometric 
constraint equations 
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we can easily get the lengths of ( )1,2,4=
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where 
i
N
X is the first,

i
N
Y is the second,

i
N
Z is the third 

element of the vector 
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. 

With respect to the SPU chain, the following 
geometric constraint equations can be obtained as 
follows: 
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Take the F-norm of Eq.(2), then we can obtain 
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Where
 
X

A
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is the first,
 
Y

A
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is the second element of the 

vector 
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With respect to the central chain PPUS, similarly we 
can have the following geometric constraints equation: 
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which can be expanded into 
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where 
  
L

6
 and

  
L

7
is the displacement of the two actuated 

prismatic joints P6 and P7 for the PPUU centre limb. 

Eq.(6), Eq.(8) and Eq.(10) can be combined into the 
total geometric constraint equations, which is a 6 scalar 
equation array with 13 variables, i.e. the 7 actuated 
joint variables
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(x, y, z,!," ,# ) .so the position problems 

have infinite solutions. 

For the centre limb, we have the relation in Eq.(10), 
which represents that for a given pose  

(x, y, z,!," ,# ) of 

the end-effector the actuated prismatic joints P6 and P7 
can be free to move in the circle M centring in 
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. The 
inverse kinematic problem for such a centre limb is ill-
posed because there may exist infinite possible 
configurations of the manipulator which determine the 
same end-effector pose. Additional criteria are used to 
determine the proper inverse solution of the centre limb 
in this paper. In order to improve the performance 
index of the manipulator, one can introduce an 
optimization constraint to come it true. Assuming that 
the end-effector is at the current pose 
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constraint as follows: 
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where 
  
o(J ) is the performance index related to the 

Eq.(10). We can choose the dexterity, stiffness, tilting 
angle, output force, etc. as the index in order to 
improve the performance in the following terms, such 
as singularity avoidance, stiffness improvement and 
tiling capacity improvement, etc. 

2.4. Jacobian Matrix 

With regard to the PUS chain, we can obtain the 
following loop vector equations based on the geometry 
of the manipulator. 
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By differentiating the above Eq.(12) with respect to 
time, the following expression can be obtained, 
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Where 
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!  is the linear velocity vector of the end-
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respect to the fixed coordinate system. 
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The matrix form of Eq.(14) can be written as (15) 
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With regard to the SPU chain, we can obtain the 
following loop vector equations: 
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Differentiating Eq.(16) with respect to time yields 
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The matrix form of Eq.(18) can be written as follows: 
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With regard to the central PPUS chain, we can get the 
following loop vector equations: 
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Differentiating Eq.(21) respect to time yields 

6 6 6
! + = + !ON v U U N

!!!!!" !!!!!!"" "" #" "         (22) 

where 
    
!U = (L

6
L

7
0) .  

Multiply 
   
U

i
N

i

! "!!!

 to Eq.(22), it can be expressed as 
follows: 

    

!
! " ON

6

" !"""

+
!
v( ) #U6

N
6

" !""""

= #U
T
#U

6
N

6

" !""""

       (23) 

Eq.(23) can be rewritten as follows: 
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3. SINGULARITY, DEXTERITY AND WORKSPACE 
ANALYSIS 

3.1. Singularity Analysis 

The forward and inverse kinematic singularity are 
the two categories of kinematic singularity. When the 
forward singularity of the manipulator occurs, the DOF 
of the input driving motion is lost, which means the 
input drive will exert invalidly in this direction. From a 
mathematical view, the forward singularity occurs when 
the rank of 
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 reduces. According to the geometric 
analysis, the lack of DOFs in certain directions will lead 
to the limited mobility of the mechanism. In this paper, 
when the forward singularity of the manipulator occurs, 
Eq.(26) must be satisfied. 
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From the above kinematic analysis, it can be seen 
that if one or more 
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vectors are parallel to the xy 
plane of the fixed coordinate system, Eq.(26) will be 
satisfied. However, in practical design, S joint is always 
kept apart from the ground. 
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If the Eq.(27) is satisfied, the 
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chain will 
became perpendicular to the xy plane, the manipulator 
will lose DOF in z-axis. The inverse singularity refers to 
the case that 
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driving input will only result in zero instantaneous 
momentum, which will make the manipulator 
uncontrollable. Actually, if all the chains and the moving 
platform are in the same plane, an instantaneous DOF 
along z-axis will appear. However, the inverse 
singularity can be avoided by appropriate design of 
kinematic chain length. Another singularity 
configuration is that all the extension lines of the 
periphery chains and the central chain meet at one 
point. When it occurs, the mechanism can still work 
normally as the driving modes of the five periphery 
chains are different.  

3.2. Dexterity Analysis 

Dexterity is an important index for evaluating the 
manipulator performance. It is explicated as the 
kinematic ability of manipulator in specified direction at 
particular pose [11]. Here, the dexterity of the Jacobian 
matrix is used to evaluate the parallel manipulator’s 
dexterity. And, the dexterity of the Jacobian matrix can 
be Figured out by 
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minimum singular values of the Jacobian matrix 
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In velocity Jacobian matrix, the output motion vector 
of the parallel manipulator proposed here are divided 
into two parts with different physical meanings, i.e, the 
linear velocity and the angular velocity. The dexterity 
for the linear velocity component of Jacobian matrix 
reflects the performance of linear velocity, while the 
one for angular velocity reflects the performance of 
angular velocity. Thus, they have different dimensions. 
Now, let us rewrite the Eq.(25) by 
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) ,respectively, are used to measure the 

position and orientation dexterities. 

To guarantee the position and orientation dexterities 
over a chosen workspace, one can constrain the 
dexterity in the following form: 
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where 
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1
and 

2
! are the two thresholds for the position 

and orientation dexterities, which are constants 
assigned according to practical design requirements. 

To show the distribution of the dexterities in the 
workspace, we give a numerical sampling as shown in 
Figure 3, the computed square area is also given in 
Figure 3. One can see that the manipulator has good 
dexterity in the sampling area of the workspace at 
different position when 

  
(R, r, a,b,c) =

 
(1.5,0.5,2,0.5,2) , 

whose units are in mm. 

3.3. Workspace Analysis 

Workspace is a critical index to evaluate the 
performance of the parallel robot. In this paper, the 
numerical method based on searching method is used 
to obtain the boundary of the workspace.  

In order to compute the numerical solutions of the 
feasible workspace, the initial design parameters of 
mechanism are set as ( ), , , , (1.5, 2,0.5,0.5, 2)R a b r c =  
with with units in mm. To compute the feasible 
workspace area, we must first discretize the pose 
coordinates of ( , , , , , )x y z ! " # , then verify the necessary 
kinematic constraints in every direction of the pose 
workspace. To determine the feasible workspace of the 
manipulator, the following constraints should be 
considered. 

3.1. Real Solution 

Verify whether each driver chain has real solution at 
designated pose ( , , , , , )x y z ! " # . The expression is 
written as follows: 
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) = 1, i = 1,2,3,4,5,6,7        (32) 

3.3.2. Range Restriction of Kinematic Pair 

Kinematic pair’s stroke is always limited in practical 
operation. One has to pay special attention to the joint 
limit of the five universal joints of the peripheral limbs 
and the two universal joints used in the centre limb, 
which is not explicitly shown in the inverse position 
kinematics equation. For the active joint variables, their 
limitations can be given as follows: 
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!R cos
#
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" L

i
" R cos

#

5
, (i = 6,7)

$

%

&
&

'

&
&

     (33) 

3.3.3. Constraint Conditions of Singularity 

When it is found that the singular point is 
approaching, the constraint conditions of the position 
and orientation dexterities and the Jacobian matrix are 
needed to avoid singularity appearing. Table 1 need to 
be satisfied. 

Table 1: Constraint Analysis of Singularity 

Constraint conditions Singularity Range 

  
det(J

!

' )    
det(J

!

' ) " 0.1
 

  
!

min
(J

"
)    

!
min

(J
"

) # 0.1  

  
!

min
(J

a
)    

!
min

(J
a
) " 0.1  

The dexterities of  J    
!

min
(J

v
) " 0.1,!

min
(J

#
) " 0.1  

3.3.4. Constraint Conditions of Tilting Angle 

The tilting angle and rotating angle is one of the 
important criteria of manipulator. Based on different 
practical conditions, there are different requirements of 
them. In this paper, the manipulator’s tilting angle and 
rotating angle both should be set no larger than  60° . 

 
Figure 4: Workspace of the manipulator. 

      
     a       b 

      
     c       d 
Figure 3: Dexterity distribution of the Jacobian matrix in the workspace at 

  
x !["0.4,0.4], y !["0.4,0.4] .(a) Maximum position 

dexterity 
  
!

v max  
at z=2,(b) Maximum orientation dexterity 

  
!

wmax  
at z=2,(c) Maximum position dexterity 

  
!

v max  
at z=2.2,(d) Maximum 

orientation dexterity 
  
!

wmax  
at z=2.2. 
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Using the four constraints given above, the 3D 
shape of usable workspace can be drawn as shown in 
Figure 4. 

4. CONCLUSION 

A 6 DOFs adaptive parallel manipulator has been 
presented in this paper. Due to the special architecture, 
the doubly actuated centre limb of the manipulator has 
infinite inverse solutions in a circle. The analysis shows 
that the dexterity of the manipulator is different in 
different configurations of the centre limb. Thus, we can 
select the congratulation with best dexterity as the 
inverse solution of the centre limb. An optimization 
model for obtaining the optimized dexterity of the 
manipulator is introduced to solve this problem, which 
also makes the manipulator have large workspace 
because some singular congratulations can be 
eliminated by the adaptive motion of the centre limb. 
For further study, the position problems, singularity and 
workspace have also been studied, showing that the 
proposed manipulator has good dexterity and large 
workspace and it is a suitable candidate for some 
complicated surface machining.  
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