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Abstract: A visual regulation strategy based on a decoupled ego-motion estimation technique, is presented for a 
nonholonomic mobile robot. Ego-motion in a static environment can be robustly estimated by planar region alignment, 
which initially detects the 2D planar motion between two frames, and the 2D motion is used to align corresponding image 
regions. Such a 2D registration removes all effects of the camera rotation, and the resulting residual displacement 
between the two aligned images is an epipolar field centered at the FOE (Focus of Expansion). Then 3D camera 
translation is recovered from the epipolar field. The 3D camera rotation is then derived from the recovered 3D translation 
and the detected 2D motion. By this way, the ego-motion estimation is decoupled into a 2D parametric motion and 
residual epipolar parallax displacements, which avoids many of the inherent ambiguities and instabilities associated with 
decomposing the image motion into its rotational and translational components, and hence makes the computation of 
ego-motion or 3D structure estimation more robust. Based on the ego-motion estimation, an adaptive control law for 
visual regulation of nonholonomic mobile robot is presented and the stability of the close loop system is analyzed in the 
sense of Lyapunov stability theory. Experiments show that the convergence of the proposed visual regulation. 
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1. INTRODUCTION 

Vision-based feedback control can increase the 
flexibility and the accuracy of robot system. For 
example, it can bypass the need for absolute 
positioning of both the robot itself and the goal, and 
moreover, visual sensing tends to become more 
accurate as the robot approached the goal. A good 
introduction about visual servo is presented in [1]. Malis 
et al. [2] classified visual servoing methods, depending 
on the error used to derive the control law, into four 
groups: position-based visual servoing (PBVS), image-
based visual servoing (IBVS), hybrid or 2-1/2-D visual 
servoing, and motion-based control systems. The 
advantages and disadvantages of PBVS and IBVS 
have been discussed in existing literatures. Both the 
control objective and the control law are directly 
expressed in the image feature parameter space for 
IBVS method, as a consequence, this method does not 
need any a priori knowledge of the 3D structure of the 
observed scene. In addition, IBVS is more robust than 
PBVS with respect to uncertainties and disturbances 
affecting the model of the robot, as well as the 
calibration of the camera [3]. However, robot 
convergence can typically be guaranteed only in a 
neighborhood of the desired configuration. A hybrid 
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approach between IBVS and PBVS, called 2-1/2-D or 
2.5D visual servoing was introduced by [4, 5] for 
articulated manipulators. The ego-motion (camera 
rotation and scaled translation) between the current 
and the target view, is obtained via a decomposition of 
the homography matrix. There are several thoughtful 
reviews summarized the achievements in the visual 
servo field by Malis et al. [2], Chaumette and 
Hutchinson [6,7].  

With the development and extensive application of 
mobile robot, there has been an increasing interest in 
the visual servoing of mobile robots during the last two 
decades, which are typically subject to nonholonomic 
kinematic constraints. For example, Masutani et al. [8] 
and Pissard-Gibollet et al. [9] propose to use a pan-tilt 
camera to add more degrees of freedom to the vision 
sensor. A piecewise-smooth PBVS for mobile robots is 
presented by Hashimoto K. and Noritsugu T. [10]. All 
these early PBVS approaches for mobile robot, 
however, need metrical information about the feature 
position with respect to the camera-robot frame in order 
to guarantee convergence to the desired configuration. 

Many approaches based on IBVS for mobile robot 
have been proposed. A IBVS method for nonholonomic 
robot proposed by Conticelli et al. [11], does not need 
any a priori 3D knowledge of the scene, and uses an 
adaptive control law to estimate the feature positions 
with respect to the camera-robot frame. A visual 
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servoing strategy based on the estimation of the height 
of features on the plane of motion was proposed by 
Burschka and Hager [12] for mobile robots equipped 
with different types of vision sensors, such as pan-tilt 
heads or panoramic cameras. However, these classical 
Jacobian-based schemes that are based on a non-
exact inversion of a interaction matrix [13,14], suffer 
from the same potential drawback of image-based 
method as that in manipulator, for examples, the 
singularity of the image Jacobian matrix, the 
requirement of the depth information and sensitivity to 
image noise (although lines have been proposed to 
achieve robustness to image noise [15]). Moreover, the 
convergence of IBVS approaches is theoretically 
ensured only in a local region (quite difficult to 
determine analytically) around the desired position [16]. 
Except in very simple cases, the analysis of the stability 
with respect to calibration errors seems to be 
impossible, since the system is coupled and nonlinear. 

Currently many researches on visual servoing of 
WMR exploit the geometric constraints. The 
information provided by geometric constraints can be 
directly used as measurement for the output feedback 
control [17]. These works use the classical teach-by-
showing strategy, where a reference image is used to 
define the desired pose (position and orientation) of an 
on-board camera. The target pose should be reached 
using only image data provided from the current and 
target images. The use of geometric constraints 
between the current and target image is a good 
alternative to improve robustness against image noise, 
and ensure correct correspondences between image 
features. Generally, there are two well-known 
constraints: epipolar geometry and the homography 
model. 

Epipolar geometry has been applied in some works 
[18-21]. In [19], an epipolar-based visual servoing for 
nonholonomic mobile robots is introduced. This 
approach takes into account the nonholonomic nature 
of the robot by driving the epipoles to zero in a smooth 
way. However, the resulting motion steers the robot 
away from the target while the lateral error is corrected 
and after that, the robot moves forwards in a straight 
line to the target position. Reference [20] presents a 
more intuitive way to drive the robot directly towards 
the target. The approach in [21] is an outgrowth of [19]. 
In [21], zeroing the epipoles is taken as a stabilization 
problem of the epipolar system, unlike the tracking 
problem in [19]. An approach that uses three views is 
proposed in [29]. Epipolar geometry has the drawback 
that degenerates with short baseline, becomes ill-

conditioned for planar scenes, and has singularity 
problems for system control. 

An optional way to overcome problems of the 
epipolar geometry is to probe the homography 
constraints. For homography constraint, it is assumed 
that all the feature points lie on the same planar scene, 
which is quite usual in human environments. In [22], a 
system for car platooning using visual tracking is 
presented by estimating the homography. Chen et al. 
[23] has designed a time-varying control law for 
tracking trajectory defined by a prerecorded sequence 
of images. Fang et al. [24] proposed a time-varying 
visual servoing scheme for a unicycle mobile robot. 
With known camera calibration parameters, the 
homography is decomposed to obtain the orientation 
and scaled Euclidean position. An adaptive estimation 
of the unknown time-varying depth information is 
employed during servoing. These homography-based 
methods usually require the decomposition of the 
homography, which is not a trivial issue. Some 
approaches which do not use the homography 
decomposition are presented in [25,26]. In [26], the 
design of the input control is directly based on the 
homography elements, the visual control problem is 
transformed in a tracking problem where the desired 
values of these homography elements during the 
motion are defined. The assumption that feature points 
should lie on a plane is not restrictive, which does not 
reduce the generality for homography-based method. 
For example, if four coplanar target points are not 
available then the subsequent development can also 
exploit methods such as the virtual parallax algorithm 
(e.g., see [27,28]) to create virtual planes. This method 
provides a more stable estimation when the epipolar 
geometry degenerates [28]. 

Homography-based visual servo control scheme 
combines the advantages of PBVS and IBVS, and can 
avoid the shortcoming of the epipolar geometry-based 
method, and furthermore the basic assumption of 
planar feature points is not restrictive, which can be 
released by virtual parallax algorithm, all these factors 
make this approach attractive. However, this approach 
requires the homography construction and 
decomposition. The homography construction is 
sensitive to image noise, and there exists a sign 
ambiguity in the homography decomposition [30], 
which leads to the ambiguity problem that requires a 
further discrimination process. Additionally, camera 
rotations and translations can induce similar image 
motions [31,32], which cause ambiguities in their 
interpretation, this case is not addressed in the existing 
papers.  
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In this paper, two basic issues of visual regulation 
for a differential-drive robot are addressed. The first 
one is the robust ego-motion estimation based on 
planar region alignment. Because of the ambiguity 
(camera rotations and translations can result in similar 
image motion), the problem of recovering the camera 
motion from a flow field is therefore an ill-conditioned 
problem, small errors in the 2D flow field usually result 
in large perturbations in the 3D motion [31]. At depth 
discontinuities, however, it is much easier to distinguish 
between the effects of camera rotations and 
translations, as the image motion of neighbour pixels at 
different depths will have similar rotational components, 
but different translational components [33]. Reference 
[34] proposed a motion estimation method, which is 
based on region alignment. In their method, the 
decomposition of image motion into a 2D parametric 
motion and residual epipolar parallax displacements 
avoids many of the inherent ambiguities and 
instabilities associated with decomposing the image 
motion into its rotational and translational components, 
and hence make the computation of ego-motion or 3D 
structure estimation more robust. Stein et al. [35] 
proposed an simplified ego-motion estimation method. 
To facilitate a robust estimation, they reduce the 
number of estimated parameters to a minimum three 
and maximum likelihood was employed. Motivated by 
these works, we apply the motion estimation with 
planar region alignment to the visual regulation 
between the current and reference image. We name it 
the decoupled approach because of the process of 
ego-motion estimation. Compared with the traditional 
homography-based motion estimation, all the feature 
points, including the points located in the planar region 
and other feature points which are not located in the 
planar region, are both used for estimating camera 
motion, the accuracy and stability can be greatly 
improved. Because the obtained translation with the 
decoupled method is a scaled result, then second issue 
addressed in this paper is the control strategy based on 
the motion estimation technique, and an adaptive 
control strategy is proposed to regulate the mobile 
robot to a desired pose with considering this time-
varying scaling factor. The stability of the control law is 
proved by Lyapunov-based analysis method. 

Compared with the existing visual regulation 
methods, the features of the proposed visual regulation 
method are as follows. 

• By making use of the planar region alignment, 
which cancels the rotational component of the 
3D camera motion for the entire scene, and 

reduces the problem to pure 3D translation, the 
3D translation (the FOE) is computed from the 
registered frames, and then the 3D rotation is 
computed by solving a small set of linear 
equations. The homography can be decoupled 
directly without using SVD and the ambiguity can 
be eliminated simultaneously. The accuracy and 
robustness of the visual regulation can be 
improved. 

• No metrical knowledge of the 3D scene is 
needed for the visual regulation. 

• Based on the decoupled motion estimation, an 
adaptive visual regulation method is designed to 
drive the mobile robot from current location to 
the target location. An adaptive estimation of the 
unknown scaled value is adopted during 
servoing. 

This paper is organized as follows. Section 2 
describes the camera-robot configuration and the 
statement of visual regulation. Section 3 introduces the 
decoupled motion estimation method based on planar 
region alignment. The nonhonomoic system model and 
controller design are developed in Sections 4 and 5, 
respectively. Some results of simulation and 
experiment are provided in Section 6. Finally, we 
conclude the work in Section 7. 

2. CAMERA-ROBOT CONFIGURATION, COORDI-
NATE DEFINITION AND PROBLEM FORMULATION 

We assume the mobile robot installed with a 
monocular camera is moved on a planar ground. 
Generally, this assumption can be satisfied when the 
robot moves in man-made environment. As illustrated 
in Figure 1, 
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respectively. The axis 
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c  is determined with right-hand 
rules. For a more practical reason, we assume that 
there is a shift between two frames (a, b along the axis 
x and y respectively) because of the installation offset, 
as shows in Figure 2. 
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In this paper, we only consider that a monocular 
camera onboard moves through a static environment. 
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b

 
Figure 2: The offset (a,b) of camera frame. 

As illustrated in Figure 3a, the linear velocity of the 
mobile robot along the direction of x axis is denoted by 
 v , and the angular velocity ! . The objective of visual 
regulation in this paper is to regulate the 
position/orientation of a mobile robot based on image 
feedback of a fixed target as showed in Figure 3b, let F 
is the current camera coordinate, another fixed 
orthogonal coordinate system, denoted by   F

* , is 

defined to represent the desired position and 
orientation. Hence, the goal is to develop a controller 
that will regulate the position and orientation in  F  to 
  F

* . 

To develop the visual regulation strategy, the 
subsequent development is based on the assumption 
that images can be acquired, analyzed, and the 
resulting data can be provided to the controller without 
restricting the control rates. The sensor data from 
image-based feedback are feature points. Feature 
points are pixels in an image that can be identified and 
tracked between images so that the motion of the 
camera/robot can be discerned from the image. Image 
processing techniques can be used to select coplanar 
feature points within an image [36]. To be noticed that, 
in this paper, we make use of both the coplanar and 
non-coplanar feature points for motion estimation. The 
coplanar feature points are used for region alignment, 
the left non-coplanar feature points are used for the 
estimation of FOE (Focus of expansion), which is 
related to the translation. All these feature points can 
be determined from a feature point tracking algorithm 
(e.g., Kanade-Lucas-Tomasi (KLT) algorithm discussed 

 

     a: Top view     b: Side view 

Figure 1: Geometry configuration of the camera-WMR system and the coordinate system definition. 

 
   a: Visual regulation in robot frame    b: Visual regulation in camera frame 

Figure 3: Visual regulation of the mobile robot system. 
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in [37] and [38]). The plane defined by the coplanar 
feature points is denoted by π as depicted in Figure 3b. 
The assumption that feature points lie on a plane is not 
restrictive and does not reduce the generality of the 
proposed method. For example, the virtual parallax 
algorithm can be employed as in [27,28]. Figure 4 
shows the visual servo architecture proposed in this 
paper. 

3. DECOUPLED MOTION ESTIMATION WITH 
PLANAR REGION ALIGNMENT 

3.1. 2D Image Motion of Planar 3D Point 

To create the 3D point motion model, we assume 
that we work with only two frames at times tl and t2 (tl < 
t2), and 

  
!t = t

2
" t

1
. Consider a particular point P in 3D 

space, let 
  
( X ,Y , Z )  is the 3D coordinates of this point 

at time tl, and 
  
( X

' ,Y ' , Z
' )  is the correspondent 3D 

coordinates at time t2,   
(x, y)  is the projection in image 

space of this point at time tl,   
(x

' , y
' )  is the 

correspondent projection at time t2. Then we can have 
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where 
 
f  denotes the focus of the camera, without loss 

generality, it is set to be 1 in this paper. 
  
(!x,!y)  

denote the image displacement of point P. Then the 
optical flow of point P is defined as follows 
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For the points on a plane 1ax by cz+ + = , then we 
have [34,39] 
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Equation (5) describes the 2D parametric image 
motion (

  
U

x
,U

y
) of an image point (x,y). The image 

motion depends on the camera motion (rotation and 
translation) and the parameters of 3D plane (a,b,c). 
According to the definition of homography matrix, 
equation (5) is another expression of projective 
homography between current image and target image. 

 
Figure 4: the architecture of visual regulation. 
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3.2. Canceling Camera Rotation by Planar Region 
Alignment 

In this section, we briefly introduce how the camera 
rotation can be canceled by planar region alignment.  

Let (u(x, y), v(x, y)) denote the 2D image motion of 
the entire scene from current frame f to target frame f *, 
and let (us(x, y), vs (x, y)) denote the 2D image motion 
of planar region (the detected image region) between 
the two frames. Let S denote the 3D surface 
corresponding to the detected planar image region, 
with depths Zs(x, y). 

Now we warp the entire current frame f towards 
target frame f * according to the 2D parametric 
transformation (us,vs), and get a warped frame 

 
f R of f. 

How to compute this warping matrix will be explained in 
next section. This warping operation will bring the 
image region, which corresponding to the detected 
planar image region S, into perfect alignment 
between

 
f R and f *. After the warping process, pixel 

(x,y) in f is displaced by (u s (x, y), v s (x, y)). Points are 
not located on the planar surface S will not be in 
registration between 

 
f R

 and f *. And furthermore, it is 
shown that the residual 2D image displacement 
between the registered frame (

 
f R

 and f) forms an 
epipolar field centered at the original FOE (focus of 
expansion), which affected only by the camera 
translation T. Readers can refer to [34] for more detail 
information.  

3.3. Planar Homography Calculation for Planar 
Region Alignment 

For 2D region alignment, we need to calculate the 
planar homography. Let 

  
p = (x, y,1)T  denotes the 

homogeneous coordinates of P in current frame, and 

  
p

'
= (x

' , y
' ,1)T

 denotes the correspondent homogen-
eous coordinates of P in target frame. Assumed all the 
points in scene is (approximately) planar, and thus the 
image transformation from current frame to target 
frame can be described by a projective homography, 

 
     a: First image     b: Second image 

 
    c: Before alignment     d: After alignment 

Figure 5: Rotation can be cancelled by planar region alignment. 
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 is a constant scale. For simplicity, we 
express the up-to-scale homography matrix H as 
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Generally, we can get more than 4 pairs of points, 
then a simple least square method can be employed to 
compute the homography matrix H. To improve the 
accuracy and robustness, some optimized process can 
be employed because of the image noise [40].  

Figure 5 shows an example of the planar region 
alignment based on homography matrix H. The upper 
two images are the current and target images, the 
lower two images displays before (Figure 5c) and after 
(Figure 5d) registration of two frames according to the 
homography matrix of ground plane. Before the 
registration, no peculiarity is found in the displayed 
feature-based optical flow. After registration, the 
rotational component of the feature flow was canceled 
for the entire scene, and almost all flow vectors point 
towards to the real FOE (Figure 5d), which is indicated 
by the small red circle. The points located on the 
ground plane are perfectly matched, and the flow 
vectors of these points after registration are all zeros.  

3.4. Least Squares Solution to the FOE 

As described in previous sections, by planar region 
alignment, the rotational component of the ego-motion 
was canceled and all flow vectors point towards or 

away from the real FOE. The FOE, which is the 
projection of the translation motion of the camera on 
the-image plane, is an essential and very useful feature 
of the ego-motion. We can see in Figure 5d, after 
planar region alignment, the computation of the FOE 
therefore becomes over-determined and numerically 
stable, as there are only two unknowns, and a simple 
least square method for calculating FOE is used in this 
section. 

For a translation motion (
  
V

x
,V

y
,V

z
), the true optic 

flow produced on the image plane is given by 
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Where f is the focus length, (x,y) is the image 
coordinate, Z denotes the depth of the point in 3D 
space. The FOE is defined as the point on the image 
plane at which the optical flow vanishes,  
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Thus each optic flow vector (
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constraint, 

 

u
i

v
i

=
x

i
! x

FOE

y
i
! y

FOE

  or  
  

[x
FOE

! y
FOE

]
v

i

u
i

"

#
$

%

&
' = x

i
v

i
! y

i
u

i      (11) 

By collecting many flow vectors in the image, we get 
a highly over-determined linear system. The least 
squares method can be used to compute the FOE from 
the flow field,  
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Since the problem of locating the FOE in a purely 
translational flow field is a highly over-determined 
problem, the computed flow field need not be accurate. 
This is unlike the other methods which try to compute 
the ego-motion from the decomposition of homography 
matrix, and require an accurate flow field in order to 
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resolve the rotation translation ambiguity [41]. Once the 
FOE is obtained, and if the camera calibration 
parameters are known, the 3D camera translation 
(
  
T

x
,T

y
,T

z
) is recovered. 

3.5. The Computation of Camera Rotation 

In formula (5), 
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z
are the 2D motion 

parameters of planar image region. Given these 2D 
motion parameters and the 3D translation parameters 
of the camera (
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), the 3D rotation parameters of 

the camera (
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) (as well as the 3D plane 

surface parameters (a, b,c)) can be obtained by solving 
(6), which is a set of eight linear equations in six 
unknowns. 

3.6. Summary of Decoupled Ego-motion Estimation 
Based on Planar Region Alignment 

The procedures of decoupled motion estimation is 
outlined as follows. 

As illustrated in Table 1, both the planar and non-
planar points are used for ego-motion estimation. By 
making use of the planar region alignment, the ego-
motion estimation can be decoupled and the result is 
robust and more accuracy. Additionally, the ambiguity 
problem that camera rotations and translations will 
induce similar image motions is overcomed. 

4. OPEN LOOP MODEL OF MOBILE ROBOT 

As In Figure 1a, the position and orientation of 
WMR in inertial frame (

 
O

w
X

w
Y

w
) is 

  
( X

w
,Y

w
,! ) , the 

kinematic model of WMR can be expressed as 

   

!x
w
= v cos!

!y
w
= v sin!

!! = "

#

$
%

&
%

         (14) 

As showed in Figure 2, let 
  
(x

r
, y

r
, z

r
)  denotes the 

coordinate of point in robot body-fixed frame, and 

  
(x

c
, y

c
, z

c
)  denotes the point coordinate in camera 

frame, then transformation from the robot-fixed frame 
to the inertial frame can be written as 
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where 
  
(x

W
, y

W
)  is the current robot coordinate in 

inertial frame, and 
  
z

I
= z

r
! 0 . 

Let  
C

P  denotes the coordinate of point in camera 
frame, and  

R
P  denotes the coordinates in robot body-

fixed frame, then the transformation from the camera 
frame to the robot-fixed frame can be expressed as 
follows, 
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.        (16) 

Apparently, 
  
z

r
! 0 ,

 
z

c
! "h

c
. 

After replaced (15) with (16), and further 
differentiating it with respect to time, then replaced with 

Table 1: The Algorithm of Camera Motion Estimation Based 

Alg. 1 planar region alignment based ego-motion estimation 

Step1: Extracting the feature points and finding the matched points between two images {  
p

i

'
, p

i }(i=1,…,N); 

Step 2: Dividing the matched points into two groups, one group is those points belong to a same planar region (points in ground plane), the 
other group includes all left non-planar points. 

Step 3: Then, according to formula (13), homography matrix H is estimated by making use of the matched planar region points; 

Step 4: Two images are registered according to the computed matrix H. The FOE is computed with least square method as described in 
section 3.4.  

Step 5: With the camera calibration parameters, the 3D camera translation T(
  
T

x
,T

y
,T

z
) in formula (6) is recovered. 

Step 6: Given these 2D motion parameters and the 3D translation parameters of the camera (
  
T

x
,T

y
,T

z
), the 3D rotation parameters of the 

camera (
  
!

x
,!

y
,!

z
) is computed according to formula (6). 

Alg. end 
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(14), we can obtain the motion model of monocular 
camera-robot system, 

  

!x
c
= ! y

c
+!b " v

!y
c
= "!x

c
"!a

.        (17) 

5. CONTROL LAW DESIGN AND STABILITY 
ANALYSIS 

As illustrated in Figure 3b, the current 
position/orientation of the mobile robot is defined at 
frame F, the target status of mobile robot is defined at 
F*. For the visual regulation of the mobile robot, we 
assume that the feature points in current image and 
reference image which correspondent to the same 
space 3D points can be extracted and matched. The 
control objective is to regulate the position/orientation 
of a mobile robot at F point to the target F* point based 
on the motion estimation given by section 3. 

5.1. Design of Control Law 

Let 
 
m

c
,
  
m

c

* denote the 3D coordinate in current 
camera frame and target camera frame, then 

  

m
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         (18) 

According to (1), we can have the normalized 3D 
coordinate of 

 
m

c
,
  
m

c

* , that is 

  

m
c
= [1

y
c

x
c

z
c

x
c

]
T

m
c

*
= [1

y
c

*

x
c

*

z
c

*

x
c

*
]

T

         (19) 

Following the relationship between camera and 
robot-fixed frame, we define the coordinate 
transformation as follows, 
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where 
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1
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2
) "! . At the target position, the 

correspondent coordinate transformation is 
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For the visual regulation task, the error signal is defined 
as 
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According to the camera-robot configuration, when 

  
e

i
= 0  (i = 0,1,2)  is satisfied, then the current camera 

frame will be coincident with the target frame. The 
objective of the control law is to let 

  
e

0
(t) ! 0,    e

1
(t) ! 0,    e

2
(t) ! 0 .       (23) 

According to (17), differentiating (22) with respect to 
time t, we can get open loop error equations as 
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        (24) 

where !  denotes a positive constant parameter, which 
is unknown in our system, 

   
! ! x

c

*            (25) 

Based on the system error dynamics of (24), and 
the subsequently stability analysis, an adaptive 
kinematic controller can be designed as follows: 
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The update law is 
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In (26) and (27), ! is an positive parameter. After 
substituting the control inputs in (26) into (24), the close 
loop system error dynamics is 
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(28)  
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5.2. Stability Analysis 

Theorem 1: The control law given in (26) ensures 
that the position and orientation of the mobile robot 
coordinate frame F is regulated to the desired 
position/orientation described by F* in the sense that 

  
lim
t!"
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Proof: to prove the above equation, we define the 

following candidate Lyapunov function as 
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where !" is the parameter estimation error of! , 

!" = "̂ # "          (30) 

Substituting (27)(28) into (29), then 
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According to (29) (31), we have 
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Based on conclusion above
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According to Barbalat lemma, 
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Then we can obtain 
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It is easy to prove that 
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According to Barbalat lemma,  
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And 

lim
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2
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Then we have, 
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Based on (32)(39), we finally have 
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6. SIMULATION AND EXPERIMENT 

For the planar region alignment based motion 
estimation, some experiments with real data have been 
conducted. As mentioned in section 3, in Figure 5, after 
ground region registration, the rotational component of 
the feature flow was canceled for the entire scene, and 
all flow vectors point towards the FOE, which is 
indicated by small red circle in Figure 5d. In this 
experiment, the location of FOE is 

  
( X

FOE
,Y

FOE
) = (322.5,191.9)  

Once the FOE is estimated, and given camera 
calibration information, the translation (TX, TY, TZ) is 
recovered. And the camera rotation can be estimated 
according to (6).  
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Figure 6: The effects of mismatched points. 

As showed in Figure 6, in the right-bottom area of 
the image, there is a mismatched point for some 
reasons, which may cause the inaccuracy of the 
computed H matrix, and the alignment too. In the 
following steps according to algorithm 1, we find that in 
this case, the result of FOE location is still robust. The 
robust level to the mismatched number is not tested in 
this paper, which will be discussed in the further works. 

the error after H alignment 

 
Figure 7: The effects of the points distribution. 

Additionally, we found that some factors may affect 
the accuracy of the result and should be noticed. As 
illustrated in Figure 7, in this case, most of the matched 
points are located in ground region, and the H matrix is 
computed with these ground points. The left matched 
points on the wall are too close to the ground lane, 
after the region alignment, the residual parallax 
displacements are too small, which may cause the 
inaccuracy of the FOE (the small red circle in Figure 7 
is the real result). From this point of view, to improve 
the accuracy of FOE, the flow vectors used for 
computing the location of FOE should be large enough, 

or the feature points should not be too close to the 
planar region. A good result can be obtained if feature 
points are evenly distributed in the image. 

To verify the visual regulation control law, some 
simulations are conducted. The initial errors of the first 
experiment are set to 
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The parameters used in this simulation are 
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Figure 8 shows the system errors (
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Figure, they are legended as (
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). Figure 9 shows 

the computed control inputs according to the control 
law given in (26). 
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Figure 8: The system error of case 1.  
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Figure 9: Control inputs of case 1. 

Figure 10 and Figure 11 show another simulation 

results for 
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= 3,e
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Figure 10: The system error of case 2.  
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Figure 11: Control inputs of case 2. 

The simulation results show the convergence of the 
proposed visual regulation control law in different 
conditions. 

7. CONCLUSIONS AND FUTURE WORKS 

A method for robust ego-motion estimation in static 
scenes is introduced first. By making use of the planar 
region alignment, which cancels the rotational 
component of the 3D camera motion for the entire 
scene, and reduces the problem to pure 3D translation, 
the 3D translation (the FOE) is computed from the 
registered frames, and then the 3D rotation is 
computed by solving a set of linear equations. The 
experiments confirm the robustness of the proposed 
method even there are mismatched points. And some 
conditions should be noticed in practice are discussed. 

Based on the decoupled motion estimation, an 
adaptive visual regulation method is designed to 
regulate the mobile robot from current location to the 
target location, which is defined by current image and 

reference image respectively. The stability and 
convergence of the proposed visual regulation is 
proved by using the Lyapunov-based analysis method. 
The simulations show the stability and convergence of 
the proposed control law.  

The future efforts will aim at the development of 
Lyapunov-based analytical methods that enable 
adaptive/robust techniques to be employed to 
compensate for the uncertainty associated with the 
camera calibration parameters, the robust level of the 
ego-motion estimation related to the mismatched 
points, and experiments with real mobile platform. 
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