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Abstract: This paper presents the design of a robust controller using the Quantitative Feedback Theory technique for an 
asymmetric hydraulic cylinder electro-hydraulic servo system based upon a linear, parametrically uncertain model in 
which some of the uncertainties reflect the variation of the parameters, and taking the external disturbance into account. 
After the derivation of a realistic nonlinear differential equations model, the linearized plant transfer function model is 
developed. The effects of parametric uncertainty are accounted for. In this paper, the tracking performance index and 
disturbance attenuation performance index are transformed into the constraints of the parametrically uncertain sensitivity 
functions respectively using the sensitivity-based QFT technique. From this point, the QFT design procedure is carried 
out to design a feasible robust controller that satisfies performance specifications for tracking and disturbance rejection. 
A nonlinear closed-loop system response is simulated using the designed controller. The results show that the robust 
stability against system uncertainties is achieved and the robust performances are also satisfied. 

Keywords: Asymmetric electro-hydraulic servo system, Uncertain dynamics system, Quantitative feedback theory, 
Robust control, Position control. 

1. INTRODUCTION 

The single-rod cylinders have been widely used in 
the electro-hydraulic control systems, due to their some 
advantages, such as small room occupied, simplicity of 
structure, and low cost. Because of the complexity of 
hydraulic system and its corresponding operation 
environment, the systems are highly nonlinear and 
subject to parameter uncertainty in large scale. Model 
parameters change with time as a result of variations in 
operating conditions and uncertain environment. For 
example, the supply pressure is subject to fluctuation, 
which may be caused by the operation of other 
actuators in a multi-user environment. The flow and 
pressure coefficients, characterizing fluid flow into and 
out of the valve, are functions of load and supply 
pressure and can vary under different operating 
conditions. The effective bulk modulus in hydraulic 
systems can significantly change under various load 
conditions, oil temperature, and air content in the oil [1]. 
So it is necessary to account for these uncertainties in 
control systems design of the hydraulic servo systems. 
This paper presents the application of QFT to the 
design of a robust position controller for the asymmetric 
electro-hydraulic servo systems. 

QFT is a robust controller design theory aimed at 
plants with parametric and unstructured uncertainties. 
The theory was firstly put forward by Horowitz [2-4], 
and studied further [5-6]. This method has been applied 
to many engineering fields, especially in the robust 
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flight control systems [7-9]. Additionally, Chait et al. 
settled the controller design for a compact disc player 
using the QFT [10]. Ismail introduced the application of 
QFT for the TBT control of MSF desalination plants 
[11]. Regarding the application of the QFT to the 
hydraulic systems, Thompson and Kremer developed a 
QFT controller for a variable-displacement hydraulic 
vane pump [12]. The simulation results were 
reasonable and satisfactory. The objective of this paper 
is to use QFT to settle the controller design for the 
position control of the electro-hydraulic servo system 
with the parametric uncertainties and disturbances. 

2. ASYMMETRIC ELECTRO-HYDRAULIC SERVO 
SYSTEM MODELING 

A schematic diagram of the asymmetric electro-
hydraulic servo system controlled by servo-valve is 
shown in Figure 1. The symbols in Figure 1 will be 

 

Figure 1: Schematic diagram of the asymmetric electro-
hydraulic servo system controlled by servo-valve. 
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interpreted with the derivation of the model. In this 
section, we derive the nonlinear differential equations 
model of the asymmetric electro-hydraulic servo 
system and further the linearized plant transfer 
function, which is fit for QFT design with the parametric 
uncertainties. 

2.1. Nonlinear Dynamic Equations 

The governing nonlinear equations describing the 
fluid flows through the valve orifices are written as [13]: 

xv≥0 (extension) 

  
q1 = cd wxv

2
! ps " p1( )           (1) 

  
q2 = cd wxv

2
! p2 " p0( )           (2) 

xv＜0 (retraction) 

  
q1 = cd wxv

2
! p1 " p0( )           (3) 

  
q2 = cd wxv

2
! ps " p2( )           (4) 

where   q1  and   q2  denote fluid flows into and out of the 

servo-valve, respectively.  cd  represents the orifice 
coefficient of discharge.  w  represents the area 
gradient that relates the spool displacement vx  to the 
orifice area. !  represents the mass density of the fluid. 

sp , 0p , 1p , 2p  represent supply pressure, return line 
pressure, head side pressure and rod side pressure of 
hydraulic cylinder, respectively. 

Continuity equations for oil flow through the 
cylinder, neglecting the leakage flow across the piston, 
are 

   
q1 = A1 !y +

V1

!e

!p1            (5) 

   
q2 = A2 !y !

V2

"e

!p2            (6) 

where 1A  and 2A  are the piston effective areas. y  is 
the piston displacement.  !e  is the effective bulk 
modulus of the hydraulic fluid, while 1V  and 2V  are the 
volumes of the fluid trapped at the sides of the piston. 
The relationship between them and the piston 
displacement can be described as 

  V1 =V01 + A1y            (7) 

  V2 =V02 ! A2 y            (8) 

where   V01  and   V02  are the initial volumes trapped in the 
head and rod sides chamber. 

Applying Newton’s second law to the forces on the 
piston, neglecting the nonlinear friction forces and the 
mass of oil, the force equation is 

   A1 p1 ! A2 p2 = m!!y + Bc !y + fd          (9) 

where m  denotes the total mass of the piston and 
payload.  Bc  is the viscous damping coefficient of 

piston and load. fd  is arbitrary external load force acted 
on the piston. 

As for the servo-valve, it can be considered as first 
order system 

   
u = 1

kv

! !xv + xv( )          (10) 

where u , vk  and ! denotes the input voltage, gain and 
time constant of the valve respectively. 

Up to now, Equations (1)~(10) compose the 
nonlinear dynamic model of the hydraulic system which 
we study. 

2.2. Linearized Transfer Function Model 

In the previous section, the nonlinear dynamic 
equations are derived. Now the linearized model with 
the variation of operating point dependent parameters 
described as uncertainties, which is fit for QFT design, 
can be obtained based on an operating point. 

As for the fluid flow equations of the servo-valve, 
the linearized equations are 

  
q1 = kq1xv ! kc1 p1          (11) 

  
q2 = kq2xv + kc2 p2         (12) 

here 
  
kq1 and

  
kq2 ,  kc1 and  kc2 denote the flow and 

pressure gains, respectively. Their representations are 

  
kq1 = cd w 2

! ps " p1( )  
  
kq2 = cd w 2

! p2 " p0( )  

  

kc1 =
cd wxv

2! ps " p1( )
 

  

kc2 =
cd wxv

2! p2 " p0( )
   xv ! 0  
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and 

  
kq1 = cd w 2

! p1 " p0( )  
  
kq2 = cd w 2

! ps " p2( )  

  

kc1 =
!cd wxv

2" p1 ! p0( )
 

  

kc2 =
!cd wxv

2" ps ! p2( )
   xv < 0  

Additionally, within the vicinity of the mid-stroke, the 
assumption can be made 

  

V1 y( )
!e

"
V2 y( )
!e

" 1
!e

V01 +V02

2
#
$%

&
'(
= )  

Thus, equations (5), (6) can be written as 

   q1 = A1 !y + ! !p1          (13) 

   q2 = A2 !y !" !p2          (14) 

From equations (9)~(14), we can obtain the 
linearized model in the Laplace domain 

  
Y (s) = P1 s( )U (s)! P2 s( )Fd s( )        (15) 

where 

  
P1 s( ) = kv A1kq1 ! s+ kc2( ) + A2kq2 ! s+ kc1( )"# $%

s & s+1( ) ms+ Bc( ) ! s+ kc1( ) ! s+ kc2( ) + A1
2 ! s+ kc2( ) + A2

2 ! s+ kc1( )"# $%
           (16) 

  
P2 s( ) = ! s+ kc1( ) ! s+ kc2( )

s ms+ Bc( ) ! s+ kc1( ) ! s+ kc2( ) + A1
2 ! s+ kc2( ) + A2

2 ! s+ kc1( )"# $%
           (17) 

To simplify the above transfer function,
  
kq1 and

  
kq2 , 

  kc1  and   kc2  are replaced by 
 
kq , kc , respectively. Hence 

transfer function (16) and (17) are reduced to (18), (19) 

  
P1 s( ) = kvkq A1 + A2( )

s ! s+1( ) ms+ Bc( ) " s+ kc( ) + A1
2 + A2

2#$ %&
     (18) 

  
P2 s( ) = ! s+ kc( )

s ms+ Bc( ) ! s+ kc( ) + A1
2 + A2

2"# $%
      (19) 

In the above two equations, the uncertainties of 
 
kq  

and  kc  denote the variation of the supply pressure, the 
operating point and the orifice area gradient of the 
servo-valve. The uncertainty of !  denotes the variation 
of the effective bulk modulus of the hydraulic fluid and 
the volumes of the fluid trapped at the sides of the 

piston. While the uncertainty of the servo-valve 
dynamics can be denoted by the variation of the 
parameter ! . 

These uncertain parameters stack in a vector, 
denoted as ! . Then the open-loop transfer function of 
the system can be written as 

  
Y (s,! ) = P1 s,!( )U (s)" P2 s,!( )Fd s( )       (20) 

The open-loop Bode plots of the plant set 
  
P1 s,!( )  

are shown in Figure 2. 

 

Figure 2: The open-loop Bode plots of the plant set
  
P1 s,!( ) . 

3. CONTROLLER SYNTHESIS 

The objective of this section is to design a robust 
position controller for the system that is represented by 
the uncertain transfer function (20). A typical two-
degree-of-freedom feedback system configuration in 
QFT is shown in Figure 3. A proper controller,

 
G s( ) , 

and a proper prefilter,
 
F s( ) , are to be designed such 

that the following conditions are satisfied. 

 

Figure 3: Two-degree-of-freedom QFT feedback control 
system. 

1. Closed-loop robust stability 
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PG
1+ PG

!1.3  
 
!" # 0,$%& )        (21) 

The above stability requirement implies an 
approximately 2.3dB gain margin for the closed-loop 
system. 

2. Robust tracking performance 

  
Tl j!( ) " Try j! ,#( ) " Tu j!( )， [ )0,!" # $      (22) 

where 
  
Try s,!( ) = F s( )P s,!( )G s( )

1+ P s,!( )G s( ) , and the upper and 

lower tracking bounds are defined as  

  
Tu s( ) = 5s+150

s2 + 20s+150
，

  
Tl s( ) = 1000

s+ 30( ) s2 +10s+100 3( ) . 

The determination of these bounds of the closed-
loop tracking frequency domain performance does not 
have the uniform theory. But these bounds can be 
defined by the time domain performances. Such as 
peak overshoot and settling time etc. of the system 
step responses. The specific procedure can be referred 
to the literature [14]. In this paper, the settling time is 
not more than 0.6s corresponding to 

 
Tl s( ) . The 

overshoot is not more than 2% corresponding to 
 
Tu s( ) . 

3. Closed-loop disturbance attenuation 

As for the disturbance attenuation at the plant 
output, the corresponding performance specification 
can be embodied by the following inequality 

  
max
!"#

P2 j$ ,!( )
1+ P1 j$ ,!( )G j$( ) % wd $( )  

!" # 0,$%& )      (23) 

where  

  

wd !( ) = 2.0(10"7 )
j!( )3

+ 60 j!( )2
+ 750 j!( ) + 2400

j!( )2
+15 j!( ) +170

 

The above design specifications can be transformed 
into the constraints of the loop transfer function 

  
L0 s( ) = P10 s( )G s( ) . These constraints shown on a 
Nichols chart compose the so-called QFT bounds. In 
the initial design, 

 
G s( )  can be simply evaluated by 1. 

Of course, it can also be obtained from other control 
theory, such as  H!  method [15]. In the process of loop 

shaping, 
  
L0 s( ) should satisfy these bound constraints. 

Then the controller can be extracted from 
  
L0 s( )  by 

dividing by the nominal plant transfer function,
  
P10 s( )  

which should be kept invariant in the design process. 
Design frequencies are chosen as  

 
! = 0.1,1,3,5,10,60,80,100,130,180,200,300"# $% . 

 

Figure 4: QFT bounds and system loop transfer function. 

The bounds generated by constraints (21), (22), 
(23) and the final loop shaping of the system are shown 
in Figure 4. In the process of loop shaping, 

  
L0 s( )  

should lie on or above the bounds to satisfy the bounds 
at low frequencies, while for higher frequencies 

  
L0 s( )  

should not enter the closed boundaries generated by 
the constraints. The controller that satisfies the 
specifications is 

  

G s( ) =
73.2 s

4.9
+1

!
"#

$
%&

s2

118.62 +
0.68s
118.6

+1
!
"#

$
%&

s
17.63

+1
!
"#

$
%&

s2

512.12 +
0.42s
512.1

+1
!
"#

$
%&

 

To satisfy the tracking specification, a prefilter is to 
be designed to place the closed-loop frequency 
response between 

 
Tu s( )  and 

 
Tl s( ) . So the suitable 

prefilter is designed to be 

  

F s( ) =
13.59 s2

10002 +
s

1000
+1

!
"#

$
%&

s
8.54

+1
!
"#

$
%&

s2

34.762 +
1.41s
34.76

+1
!
"#

$
%&

s2

10002 +
0.176s
1000

+1
!
"#

$
%&

 

4. CLOSED-LOOP ANALYSIS 

The aforementioned controller design is based on 
the finite frequency points. So it is necessary to verify 
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through analysis whether it can guarantee to satisfy the 
specifications in total operating points of the system or 
not. The analysis results for the gain margin, the 
tracking performance and the disturbance attenuation 
are shown in Figure 5, Figure 6 and Figure 7, 
respectively. The step responses of closed-loop control 
system are shown in Figure 8. As can be seen, for all 
cases pertaining to extreme parts of the operating 
envelope, the specifications are satisfied. 

 

Figure 5: The analysis curves of stability. 

 

Figure 6: The analysis curves of tracking performance. 

CONCLUSION 

This paper has described the application of the QFT 
method to the development of a position controller for 
the electro-hydraulic servo system. A linear fourth order 
model with parametric uncertainties was obtained to 
describe the relationship between the control signal 
and the position of piston. A robust position controller 
was designed using QFT method that, along with a 

reasonable prefilter, maintains a satisfactory position 
control performance against the model parametric 
uncertainties and the external disturbance. The results 
show that the designed controller is effective and 
feasible to the electro-hydraulic servo system. 
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