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Abstract: The construction and maintenance of a robocentric map is key to high-level mobile robotic tasks like path 
planning and smart navigation. But the challenge of dynamic environment and huge amount of dense sensor data makes 
it hard to be implemented in a real-world application for long-term use. In this paper we present a novel mapping 
approach by incorporating semantic cuboid object detection and multi-view geometry information. The proposed system 
can precisely describe the incremental 3D environment in real-time and maintain a long-term map by extracting out 
moving objects. The representation of the map is a collection of sub-volumes which can be utilized to perform pose 
graph optimization to address the challenge of building a consistent and scalable map. These sub-volumes are first 
aligned by localization module and refined by fusing the active volumes using co-visible graph. With the proposed 
framework we can obtain the object-level constraints and propose a consistent obstacle mapping system combining 
multi-view geometry with obstacle detection to obtain robust static map in a complex environment. Public dataset and 
self-collected data demonstrate the efficiency and consistency of our proposed approach. 
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1. INTRODUCTION 

Mapping the 3D surroundings is one of the basic 
abilities of mobile robots and it is always a challenging 
task due to the huge magnitude of sensor data and 
different types of noises. In addition to proper 
visualization of the environment, mapping should 
provide sufficient information to assist obstacle 
avoidance, planning and navigation. In this paper we 
aim to provide a consistent and scalable mapping 
approach which is also lightweight and can provide 
long-term references. 

Simultaneous Localization and Mapping (SLAM) 
has been a hot research topic in the last decades by 
achieving satisfactory accuracy in GPS-denied 
environment, and to increase localization robustness 
and reduce data amount to be processed, most SLAM 
methods [1] convert the observation data into a 
collection of sparse features. The map of collections 
serves for localization by providing the source of 
bundle adjustment [2], but they also limit the function 
only for localization. The sparse 3D landmarks cannot 
meet the need of tasks like path planning or long-term 
navigation. In recent years some robot techniques 
stemming from dense 3D reconstruction [3] are 
adopted into robot applications [4, 5]. However, the 
mediocre localization accuracy makes drift accumulate 
rapidly and thus makes the mapping result 
inconsistent. 

The rapid development of deep neural network 
makes the recognition and localization of 2D [6, 7] and 
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3D [8] objects accurate and fast enough for real-time 
robot applications. This paper proposes a robocentric 
mapping approach combining the clues of 2D pixel 
labeling and 3D geometric structure of the 
environments, which can be applied in various mobile 
robot applications. 2D semantic information can 
recognize and extract movable objects like vehicles 
and pedestrians, which we model as map cuboids, 
representing temporary map elements. The 3D 
geometric observations remain the structure of the 
whole scene, so we can abstract them and maintain a 
consistent map after refinement. The differentiation of 
temporary dynamic objects and static surroundings 
ensures the effectiveness of navigation, especially for 
long-term use. 

The contributions of the proposed approach can be 
summarized as following. 

• We propose a real-time approach combining the 
environment geometry and 2D semantic 
information to leverage a 3D incremental 
volumetric representation that can be easily 
integrated into the pose graph optimization of 
SLAM process. 

• We implement the mapping method into an 
efficient system that can handle dynamic 
obstacles and generate a consistent map for 
both short-term and long-term use. 

• We evaluate the method using public dataset 
and demonstrate the usability and efficiency in 
urban areas. 
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2. RELATED WORKS 

For exploration in unknown environments metric 
maps are needed to perform path planning and 
obstacle avoidance. GMapping [9] and Hector Mapping 
[10] are widely used for laser range finders in indoor 
applications. 

Many researchers chose to use the technique of 
sub-mapping [11, 12] to split the global estimation into 
many smaller mapping regions and compute individual 
estimation for each part, and then analyze the 
relationship between these sub-maps. However, during 
this process, there comes a lot of issues rising by sub-
mapping, including map overlap, data duplication, map 
fusion, map alignment and global coordinate 
unification. 

Dense mapping usually requires a large amount of 
computation and memory, which brings big trouble in 
real-time robotics application. Obstacle mapping can 
reduce the resources needed and meanwhile keep 
most of the information in dense maps. Obstacle 
detection and mapping is an essential task for robot to 
avoid collision and other dangers. The first task for 
autonomous vehicles is obstacle detection from raw 
sensor data like laser, radar or pure visual signals, then 
map of the environment is generated [13]. 

The map representation method can be divided into 
four categories. The first category is the probabilistic 
occupancy grid map-based approaches [14] which 
represents the scene as a 2D lattice, with each cell a 
certain area, and maintains the occupancy status 
whether the cell is occupied by obstacles. The second 
category is digital elevation map (DEM) based methods 
which stores the height information of the 3D point 
cloud. In [15], the obstacles are detected and fused 
with DEM. The third category utilizes scene flow 
segmentation approaches by merging the depth and 
motion information [16]. The fourth category is simply 
the full reconstruction of obstacles by geometric and 
color information [17]. 

Of the many 3D map representation methods, 
volumetric occupancy grids are the most effective 
approach for robotics [18]. While point clouds and 
dense surface representations are relevant for many 
applications, occupancy grids methods, have the 
advantage of providing definite and indefinite regions of 
space. One famous implementation is OctoMap [19], 
which exploits an octree-based data structure to 
accumulate data probabilistically with the advantage of 

low storage and maintaining the distinction between 
occupied, unoccupied, and unknown cells. 

3. PROPOSED METHOD 

In this section the proposed multiple layer mapping 
approach is introduced. 

3.1. Problem Statement 

For large scenarios, voxels with adjustable 
resolutions are widely used. Therefore, each obstacle 
can be subdivided by multiple volumes, with different 
heights. 

The scene representation is a set of cells ℳ 
following the notation in [20], so each obstacle ℳ! has 
the following attributes: position "∈  ℝ3, normal vector $  
∈  ℝ3, colour model &   ∈  ℕ3, width %  ∈  ℝ, height ℎ  ∈  ℝ 
and the last updated timestamp '. 

In our proposed framework, the occupied map ℳ 
has three layers: movable cuboids (ℳ'()*) representing 
the temporarily existing objects, active volumes 
(ℳ+,'!-() representing the local map sub-voxels for 
further refinement, and inactive collection of history 
volumes (ℳ!.+,'!-() representing the global map voxels. 

Assuming the source of data comes from only one 
type of sensor, we formulate the problem: Given 3D 
geometric measurement (={(1}), collection of co-
visible key-frames, estimated camera trajectory  
)34!   ∈   56(3)  and semantic object information 
S = Sk{ }k=1

m , the task is to calculate the global occupied 
map ℳ. 

Our proposed approach combines the grid-based 
mapping and obstacle representation into mapping to 
describe large-scale environments by using small sub-
volumes that cover only the essential parts of the 
environment, which implies that we remove the ground 
plane data and obstacle too far away. The overall 
system is depicted in Figure 1 and is composed of four 
modules: 2D object detection and tracking, active 
volume integration, temporal map update, and sub 
volume fusion. In the following sections we will explain 
these modules in detail. 

3.2. Real-time Object Extraction and Tracking 

As for a wide angle camera, an object detection 
Sk
1 = ck

1 , sk
1 ,bk

1( )!Sk1  extracted from keyframe k with 
detected class label ck

1 , detection confidence score 
sk
1 !C  where C  is a predesigned class label set, and a 
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bounding box bk
1 . Such objects can be retrieved from 

many state-of-the-art approaches for object 
recognition, such as [6, 7, 21]. Some are based on 
CNN framework which must run on GPU and some like 
deformable parts model (DPM) can run on CPU in real 
time. As in most of these methods, an object proposal 
is needed, one advantage is that we have already the 
bounding boxes generated, so the search space has 
been dramatically reduced and the speed performance 
is much better. We utilize YOLOv3 framework [22] here 
to implement object classification and localization, as 
shown in sub figure (a) of Figure 2. 

After the extraction, to ensure the robustness we 
need to consider the previous . frames to keep track 
on the extracted objects. We utilize the newly 
developed MASS1 technique to track the detected 
objects (yet the publication of this method is still under 
review). This method can guarantee efficiency and 
robustness. Thus, the temporary cuboid map layer 
ℳ'()* is acquired, as shown in sub figure (e) of  
Figure 2.  

3.3. Active Volume Integration  

The active volumes ℳ+,'!-( consist the local sub 
volumes of the detected obstacles. "Local" here refers 
to the landmarks can be observed by a graph called co-

                                            

1 Multiple Object Tracking with Attention to Appearance, Structure, Motion and 
Size: 
http://www.cvlibs.net/datasets/kitti/eval_tracking_detail.php?result=e43ccf042b
18819f740252b73de3d3da957d7273. 

visible graph. We detect all the obstacles in the scene 
with the help of u-v-disparity image space, which is 
equivalent to locating the peak response regions in the 
u-disparity image. 

We firstly generate the region of interest (ROI), 
namely exclude all the objects that the vehicle will 
never collide in the current frame, like the sky or tree 
canopy which is too high or the road surface plane. 
Therefore, the search space of obstacles is greatly 
reduced, and many outliers can be rejected. 

After the generation of ROI and statistical image 
preprocessing method like bilateral filter, we implement 
a depth based connected component approach to 
detect the obstacles. Based on the peak information of 
the u-disparity map with only ROI data, we exploit the 
method proposed in [23]. A hysteresis threshold is 
applied to remove the noises. As shown in sub figures 
(c) and (d) of Figure 2, we are able to generate the 
active volume integration map thus obtain the 
corresponding obstacle disparity image as the refined 
map input. 

3.4. Temporal Obstacle Map Update  

The temporal obstacle mapping process utilizes 9 
neighbor keyframes at keyframe 1 and each obstacle is 
searched along the epipolar line, generating 9 depth 
and normal vector hypotheses. Each depth hypothesis 
follows Gaussian distribution N !s ,"!s

2( )  due to 

observation noises containing feature extraction, 
matching and disparity resolution limitation. Each 

 

Figure 1: Block diagram of the proposed mapping approach. The global occupied map is generated and updated by the 
measurements of RGB-D or stereo cameras. 
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obstacle sk  is characterized by its average intensity 
value :, height ℎ, width ; and class label <, and the 
goal is to find the correspondence on image =. 

The observed data is composed of the semantic 
obstacle measurements *1:Q   ,   landmark geometric 
constraints "1:p     and camera poses +1:T. In each frame 
we have D number of obstacles and E number of 
landmarks. 

 

       (1) 

where the conditional independence assumption is 
applied to obtain the equation. Then according to 
Bayes rules, we get the inverse sensor model: 

  (2) 

So finally, we are able to use the maximum 
posterior (MAP) estimate ℳ∗   =  argmaxℳE(ℳ|(,  ,,  -) 
to fuse the existing global map with the new added 
sub-map Hℳ1   .   Maximizing the posterior consists in 
finding the configuration of the nodes .∗ that minimizes 
the energy of all the edges co-visible locally in the map 
graphs with obstacle observation and pose vertices. 
Then we try to seek for the most likely configuration to 
assign the newly added graph nodes by minimizing the 
following cost function: 

       (3) 

where /J and /) are respectively the edges in the 
reference and matched graphs    and , while /!.'(r 
are the edges connecting the two graphs. Therefore, to 
merge the graphs, we set the output a set of edges ℳ 
connecting the vertices of  to vertices of . Each 
time we expand a node  in the current graph and 
seek for neighbors in the reference and we try to match 
the observations. 

We display the pseudo-code for the whole 
procedure in Algorithm 1. 

 

Figure 2: Illustration of obstacle detection process and active volume fusion process using object detection and depth 
information. (a) 2D object detection using YOLO [23] on the image from KITTI sequences 0014. (b) The corresponding disparity 
image generated using SGM method. (c) Obstacle segmentation using v-disparity and ground point triangulation techniques 
(Red regions are the obstacle masks within 30 meters). (d) The obstacle disparity image after (c). (e) The tracking method 
makes the detection result more robust. (f) The static obstacle disparity image after (d) and (e). 
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4. EXPERIMENTS 

Since we are jointly estimating both the mapping 
and structure of self-localization, it is expected that we 
improve both. In this section we define the evaluation 
method for measuring the above and show results to 
validate our claim. We demonstrate the results of our 
proposed approach in public KITTI dataset and real 
dataset captured in NTU campus. Both these datasets 
involve difficult fast forward moving stereo cameras. 

The NTU experimental datasets were recorded 
using a stereo camera set in outdoor environment 
(NTU campus). The data include images captured at 
30 Hz. We have performed all experiments in a 
desktop with an Intel i5-8400 processor with 6 threads 
and a NVIDIA 1080 GPU (for both parallel stereo 
matching and object detection).  For ego-motion 
estimation and mapping, we just use the power of CPU. 
We set the minimum disparity pixel 12 as the threshold 
to disregard all the obstacles 50 meters away from the 
sensor. 

4.1. Map Merging with Visual Data 

As shown in Figure 3, we generate an obstacle map 
to annotate where are the obstacles and where it is 
free to travel, facilitating robots the ability to avoid 
obstacles. From our 3D obstacle map, we can obtain 
the probability, size and position of the detected 
individual obstacles, in both local and global 
coordinates. 

The advantage over occupancy grid map is that the 
obstacle mapping consumes low memory and 
calculation resources, which is favorable applied in 
large scale environment. Table 1 shows the average 
run time for each module and total process for each 
frame, including object detection, active volume 
integration, disparity generation and sub-map fusion, 
running in optimized multi-thread framework (excluding 
the camera localization module, which is not tightly 
coupled with our mapping task). It is obvious that the 
system operates in real-time as the total time spent is 
much less than the total sequence length. However, it 

Algorithm 1: Temporal and Spatial Map Merging 
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is noteworthy that the mapping module is always 
around 30 milliseconds delay permitting the generation 
of keyframe pose estimation. 

4.2. Semantic Temporary Cuboids 

In this section, the performance of temporary 
moving cuboid is presented qualitatively to verify the 

       
(a) Original image 

      
(b) Octomap from raw point cloud 

       
(c) Our proposed mapping results 

Figure 3: Global map generated by a scenario in KITTI dataset (a) Original image. (b) Octomap after removing road surface. 
(c) Our proposed system. (The slim green line in the middle is the robot trajectory. The cuboid rendered in red represents the 
vehicle removed from our inactive map but remained in the temporary map. 

 
Table 1: Average runtime (ms) of our Proposed Method and that of OctoMap [19], with Around 1000 Runs. The Total 

Process Time is Run Under Multi-thread Architecture to Ensure Efficiency. The Resolution of output Map 
which has an Impact on the Mapping Process Time is Set to 0.2 Meter. “-” here Means not utilized 

Dataset Method Object Detection Disparity 
Generation 

Volume 
Integration 

Map 
Fusion Total 

Proposed Semantic 18.62 20.57 13.71 12.80 54.83 

Proposed no class - 16.77 13.70 6.74 37.21 
Customized 

camera 
Octomap - 16.71 - 25.01 42.72 

Proposed Semantic 20.34 22.43 14.52 14.73 58.66 

Proposed no class - 16.96 14.50 7.45 38.91 Camera for KITTI 

Octomap - 16.94 - 24.79 42.73 
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accuracy. All the maps are created online and 
displayed without any post-processing. Note that 
different from the existing dense reconstruction 
methods taking a large amount of memory or sparse 
structure mapping methods that provide only 
localization information, our system can handle 
obstacle mapping in real time spending limited 
resources and providing 3D structure information of the 
environment. In Figure 4 the obstacle map of the 
outdoor scene is presented. According to Table 2 
illustrated in Appendix, the average displacement error 
is within 0.5 m and the average bearing angle error is 
about 1 degree, which validates the performance of our 
proposed approach. 

CONCLUSION 

In this paper we carry out a new framework to build 
a robust and accurate 3D global occupied map on 
mobile robotic system, which can limit map growth, and 
run in real time with the help of a GPU. Firstly, we 
extract out semantic moving objects out into the first 
layer: temporal moving map layer. Then we fuse depth 
information with the RGB image data to leverage a 
collection of 3D points without the moving objects, 

ground plane and noises. The points are converted to 
sub-volumes and redundant sub-volumes are 
disregarded during the process of fusing and updating, 
to limit map growth amount. The second map layer, 
collection of active sub-volumes, is produced and ready 
to be updated until they become the third kind of map 
layer, inactive volume collection, when they are not in 
the current key frame sliding window. The sliding 
window maintains a covisibility graph inside the visual 
SLAM framework, so the map is coupled with the 
localization module. 

We focus on the spatial and temporal obstacle 
merging based on the covisibility property of visual 
SLAM system and update map with the help of ego-
motion estimation and joint optimization with multiple 
depth hypotheses. 

In our evaluation of public KITTI and self-collected 
datasets, the results show that our proposed approach 
can maintain a consistent global map. The three kinds 
of map layer have their own usages, and the inactive 
sub-volume map layer can be further stored for long-
term use. 

 

Figure 4: The 3D temporal obstacle mapping results in outdoor self-collected dataset. The ID number displayed 
represents the tracking identity of individual vehicles. The top figure denotes the semantic object detection and tracking results. 
The bottom one represents Temporary moving map layer evaluated by projecting 3D point cloud (red sparse points) from 
Velodyne sensor. 
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APPENDIX  
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Range of Y 
Direction (meters) Bearing (degree) X Direction 

Measurement 
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(meters) 
Y Direction 

Measurement  
Object Height 

(meters) No. 
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01 13.38 12.04 0.62 -2.89 -2.27 0.26 -24.38 -21.35 3.02 -1.95 -4.04 2.80 2.09 0.71 -0.72 -2.22 1.84 1.50 0.34 

02 24.77 23.00 1.05 -0.46 -0.05 0.05 -2.13 -0.25 1.88 0.54 -1.75 2.41 2.29 0.12 -1.20 -2.79 1.82 1.59 0.23 

03 23.89 22.90 0.27 -6.67 -6.36 0.05 -31.20 -31.04 0.16 -5.98 -7.95 2.84 1.97 0.87 -1.33 -2.42 1.73 1.09 0.64 

04 44.59 43.31 0.56 5.39 5.42 0.33 13.78 14.27 0.48 6.46 4.71 2.02 1.75 0.27 -1.48 -2.97 1.98 1.49 0.49 

05 39.35 36.97 1.66 -1.58 -1.55 0.33 -4.60 -4.80 0.20 -0.81 -2.55 2.56 1.74 0.82 -0.95 -2.78 1.70 1.83 0.13 

06 25.73 26.41 1.40 0.55 0.78 0.13 2.45 3.38 0.93 1.73 -0.15 1.84 1.88 0.04 -1.83 -3.26 1.58 1.43 0.15 

07 35.20 36.96 2.48 -1.68 -1.41 0.09 -5.47 -4.37 1.10 -0.02 -2.52 2.85 2.50 0.35 -0.29 -2.26 3.16 1.97 1.19 

08 31.85 30.49 0.64 -3.48 -2.99 0.13 -
12.47 

-
11.20 1.27 -1.37 -3.82 2.03 2.45 0.42 -2.20 -3.90 1.51 1.70 0.19 

09 18.58 19.27 1.41 -0.68 -0.33 0.01 -4.19 -1.96 2.23 0.55 -1.35 1.85 1.90 0.05 -1.68 -2.45 1.51 0.77 0.74 

10 26.76 19.59 6.45 8.09 6.16 2.29 33.64 34.91 1.27 6.48 5.89 0.98 0.59 0.39 -1.05 -2.70 2.34 1.65 0.69 

 
Camera to 
Velodyne 

Offset 
0.72 

Camera to 
Velodyne 

Offset 
0.36              

Note: The metrics of accuracy can be calculated by:  
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