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Abstract: The aim of this paper is to digitize the environments in which humans live, at low cost, and reconstruct highly 
accurate three-dimensional environments that are based on those in the real world. This three-dimensional content can 
be used such as for virtual reality environments and three-dimensional maps for automatic driving systems. 

In general, however, a three-dimensional environment must be carefully reconstructed by manually moving the sensors 
used to first scan the real environment on which the three-dimensional one is based. This is done so that every corner of 
an entire area can be measured, but time and costs increase as the area expands. Therefore, a system that creates 
three-dimensional content that is based on real-world large-scale buildings at low cost is proposed. This involves 
automatically scanning the indoors with a mobile robot that uses low-cost sensors and generating 3D point clouds. 

When the robot reaches an appropriate measurement position, it collects the three-dimensional data of shapes 
observable from that position by using a 3D sensor and 360-degree panoramic camera. The problem of determining an 
appropriate measurement position is called the “next best view problem,” and it is difficult to solve in a complicated 
indoor environment. To deal with this problem, a deep reinforcement learning method is employed. It combines 
reinforcement learning, with which an autonomous agent learns strategies for selecting behavior, and deep learning 
done using a neural network. As a result, 3D point cloud data can be generated with better quality than the conventional 
rule-based approach. 
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1. INTRODUCTION 

In recent years, as progress continues to be made 
on virtual reality (VR) and augmented reality (AR) 
technologies, the demand for three-dimensional 
content has explosively increased. However, to create 
three-dimensional content, experts must devise a 
model from scratch or manually scrutinize objects finely 
with a 3D scanner from every angle, which is very time-
consuming. It is clear that there are huge costs 
involved in creating large-scale three-dimensional 
content in the real world. In addition to using real-world 
3D content in VR/AR applications, 3D content that is 
based on a real-world environment can also be used by 
intelligent robots as a map for use in automatic driving. 
However, such robots must be manually moved, and 
three-dimensional content must be carefully created so 
that the entire operation area is contained in the map. 
This becomes time intensive and costly as the map 
area expands. 

In other words, in the VR and robotics fields, real-
world 3D content is required, but the cost of creation, 
especially the cost of creating large-scale 3D content,  
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is very high. Therefore, this research is aimed at 
creating three-dimensional content that is based on 
large-scale buildings in the real world, and an efficient 
method is proposed that is low-cost. 

To reduce costs, a system is needed that 
automatically collects the three-dimensional data of an 
entire environment without the need for humans. 
Therefore, in this research, the focus is on equipment 
costs, and a robot is used that can be run 
autonomously with low-cost devices. A system is 
introduced that automatically collects three-dimensional 
data from each of the positions from which an 
environment is measured and automatically generates 
large-scale three-dimensional content. To scan an 
entire environment without data loss, these 
measurement positions must be dynamically 
determined on the basis of three-dimensional data 
measured by sensors. In this research, on the basis of 
actual data collected by using sensors, the optimal 
positions to which the robot should go next for 
measurement from the robot’s current position are 
estimated by using a model trained by reinforcement 
learning. 

It is extremely difficult for a robot to repeatedly 
collect measurement data through repeated trial and 
error by traveling all the way to estimated 
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measurement positions in a real-world environment. 
Therefore, in this study, reinforcement learning is used 
to train a model. The model automatically selects the 
next optimal measurement position on the basis of 
sensor data by using a virtual environment constructed 
from 3D point cloud data of an existing building as the 
environment. 

An experiment was conducted to automatically 
generate 3D content in the real world by implementing 
a learning model trained in a virtual environment into a 
robot system. The generated 3D content was applied to 
a VR disaster simulation system [14] and an automatic 
driving system for electric wheelchairs. The 3D content 
generated by the proposed method was confirmed to 
be useable as content for VR environments and as a 
map of an environment for autonomous driving. 

2. RELATED WORK 

Methods used in studies on reconstructing indoor 
3D environments for use as 3D maps can be roughly 
divided into two categories. One consists of semi-
automatic methods in which a human moves a sensor 
and generates a 3D scene [5,6,10,12,17,23,24]. The 
other consists of automatic methods in which an 
autonomous mobile robot senses an indoor area and 
generates a 3D scene [1,2,4,20]. When 3D 
reconstruction is performed by manually moving a 
sensor, data coverage guaranteed, so advanced 
methods can be performed while scanning. One such 
advanced method is 3D object recognition [22]. 
However, if the target to be scanned is large, scanning 
it manually becomes very difficult to do. 

To automatically reconstruct 3D scenes, automatic 
scanning and automatic modeling must first be 
distinguished. In this paper, automatic scanning is 
focused on. The method of this paper can completely 
scan the interiors of buildings by using a 2D/3D laser 
scanner onboard a mobile robot. 

A mobile robot with a 3D scanner was used in Adán 
et al.’s study [1], in which a strategy was proposed for 
automating the process of scanning the indoors with a 
mobile robot. Micro-aerial vehicles (MAVs) can even be 
used to gather 3D information on indoor environments, 
like in Shen et al.’s study [20]. They proposed an 
indoor mapping approach that uses an MAV equipped 
with a camera and laser range finder that gathers data 
at different heights in a room. 

Bircher et al. [4] also proposed a 3D search method 
suitable for MAVs. This method voxelizes point clouds 

collected from depth images to generate a 3D 
occupancy grid map. Next, it analyzes the map with a 
tree structure and estimates the positions at which data 
on parts that have not yet been mapped can be best 
collected. In this approach, search area boundaries are 
required. 

Bai et al. [2] proposed a method that searches for 
an appropriate position and direction in a 2D map for 
mapping and exploration by using a deep neural 
network. Using a random dungeon generator, a virtual 
2D map is generated and simulated. A small fragment 
of a generated 2D map is sampled and inputted to a 
neural network model. Then, the next measurement 
position is estimated on the basis of the partial 2D map. 
This method has not yet been applied to generating 3D 
maps. 

3. MOBILE SCANNING ROBOT FOR 
RECONSTRUCTING BUILDING-SCALE INDOOR 
ENVIRONMENT 

To reduce manual costs, a system for automatically 
collecting three-dimensional data of an entire 
environment is necessary. In this research, a scanning 
robot is designed in consideration of equipment costs, 
and it can run autonomously with low-cost sensors. 
The configuration of the robot is shown in Figure 1. 

 
Figure 1: Indoor Scanning Robot. 

The upper part of the robot is a scanning device that 
consists of a Sweep 3D Scanner that is capable of 
collecting 3D point clouds in 360 degrees and a full 
spherical camera, a Ricoh THETA V. This scanning 
device can collect 3D colored point clouds of the 
indoors. The lower part of the robot is a movement 
device that consists of a RPLIDAR A2 for 2D LiDAR 
and an iRobot Create 2. The position of the robot itself 
can be estimated by using the RPLIDAR A2, and the 
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robot can be autonomously run in combination with the 
iRobot Create 2. Thus, a system has been created that 
automatically generates point cloud data in building 
environments with this robot. 

3.1. Robot Navigation 

To automatically reconstruct an indoor environment, 
first, determining the functionality of this robot that 
autonomously operates in general indoor environments 
is necessary. In this research, a general indoor 
environment is considered to have a flat floor, walls, 
and a ceiling. In addition, objects such as chairs and 
desks exist in the environment, and it is also assumed 
that humans are walking around. Thus, the robot is 
assumed to operate on a flat surface. 

For autonomous driving, a map of the physical 
space to be traveled is necessary for the robot to 
understand its present location, generate a route to a 
destination, and then travel to it. Since the scanning 
robot operates on a flat plane, a 2D map is sufficient for 
the environment map. Therefore, in this research, both 
2D range sensor data and odometry done with the 
iRobot Create 2 are integrated by using GMapping [8] 
to create a 2D occupancy grid map. An example of a 
created 2D map is shown in Figure 2. 

With the created map, the robot must estimate its 
current position and plan a route in order to 
autonomously travel to a next position from which to 
perform measurement. In this study, an autonomous 
running system for scanning robots was implemented 
by using the navigation stack of the robot operating 
system (ROS) [13], enabling self-position estimation, 
route planning, and generation of control commands 
sent to iRobot Create 2. 

The robot must be controlled manually when 
creating a 2D map. However, once the 2D map is 
created, the robot enters autonomous mode, 
autonomously travels to a next measurement position, 
and automatically collects point cloud data around the 
position. 

3.2. 3D Colored Point Cloud Generation 

When the robot arrives at a measurement position, 
it starts collecting three-dimensional point cloud data 
on the surrounding area. As mentioned, the Sweep 3D 
Scanner, which is capable of collecting 3D point 
clouds, is used in combination with a Ricoh THETA V 
whole spherical camera to collect data on the 
environment at each measurement position as 3D 
colored point cloud data. 

When the robot arrives at a measurement position, 
there is the possibility that the scanner, which is at the 
top, will sway for a while. This can lead to noise being 
contained in the point cloud data collected by the 
scanner, so information is used from the inertial 
measurement unit (IMU) of Sweep 3D Scanner to start 
collecting point clouds on the surrounding environment 
after the scanner has stabilized. Preliminary processing 
is necessary because there is a possibility that useless 
data and outliers may exist in the collected raw data. 
Since Sweep 3D Scanner uses Sweep, which is a 2D 
laser range sensor, the laser reflection intensity can be 
obtained together with coordinates at the time of 
measurement. On the basis of the intensity, some 
noise is deleted by deleting points whose values are 
remarkably low. Also, VoxelGridFilter, included in the 
point cloud library (PCL) [18], is used to unify the 
density of point clouds, and outliers are excluded by 
using StatisticalOutlierRemoval. 

Ricoh’s THETA V camera is used in combination 
with the scanner, and the color information of an 
environment is acquired in 360 degrees around the 
robot as a panoramic image. Shooting with a full 
celestial camera is fast, but there are frequent 
opportunities for an image to include the figure of a 
person passing by. When a human enters a panoramic 
image, their figure becomes noise that colors the point 
clouds, which causes trouble when matching between 
the point cloud and the image. Therefore, in this 
research, RetinaNet is used [11]. It is a deep learning 
model for detecting existing objects in panoramic 
images to determine whether there is a human in the 

 
Figure 2: 2D Map. 
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images. If it is recognized that a person has entered a 
panoramic image, the scanner pauses to wait 20 
seconds. Then, the image is shot again, and this 
continues every 20 seconds until no human appears in 
the image. Thus, this prevents people from appearing 
in panoramic images. 

Since the panoramic images and point cloud data 
taken with the all-sky camera contain 360-degree data 
on the surroundings measured from the same origin, 
correspondence is established between each point of 
the point cloud and the pixels of an image. To match 
each pixel of a collected panoramic image to each 
point of a three-dimensional point cloud, it is necessary 
to match each other’s coordinate systems. In this 
study, both are converted to the same spherical 
coordinate system, and points are matched with pixels 
by using a neighborhood method based on angle. 
Then, a colored point cloud is generated. A collected 
raw point cloud, panoramic image, and generated 
colored point cloud are shown in Figure 3. 

When measurement at one place is completed, the 
generated three-dimensional colored point cloud data 
and the data measured so far are automatically 
synthesized. The processing of this part has two steps. 
First, coordinate transformation is performed on 
coordinates to each point of the point cloud measured 
by using the self-position of the robot, and a point is 
added to the previous point cloud data. However, it is 
difficult for the robot to autonomously travel accurately 
without there being a gap of 1 mm between the robot 
itself and the destination position and angle specified 
by the robot, so there is an error in the locational 
accuracy at a measurement position. Thus, there is a 
deviation between the point clouds due to the error. 
Therefore, fine matching is performed by using PCL’s 
iterative closest point (ICP) algorithm. 

The robot autonomously can then travel to a 
measurement position, collect three-dimensional shape 
information and color information on the surroundings, 
and generate a three-dimensional colored point cloud. 
Then, the generated point cloud is matched with the 

previous point cloud. This process is repeated to 
synthesize point clouds measured at multiple 
measurement points into one large-scale point cloud. 

4. DEEP REINFORCEMENT LEARNING TO FIND 
NEXT-BEST-VIEW POSITIONS 

The robot autonomously travels to a measurement 
point, gathers data on the surroundings after the 
scanner stabilizes, and then travels to the next 
measurement point. Data are collected with this 
procedure. Therefore, measurement positions suitable 
for the target environment must be estimated in 
advance. 

In this study, the next measurement positions are 
estimated sequentially by using a model trained by 
reinforcement learning [21] with actual data collected 
by using sensors. In reinforcement learning, instead of 
considering the optimal movement of the target robot to 
be a correct answer, a reward is given to each action of 
the robot. Robots can learn strategies for taking optimal 
actions by comparing how they act and how many 
rewards are likely to be obtained and then choosing 
behaviors that are likely to receive the maximum 
rewards. 

Instead of using data actually collected by sensors, 
the measurement position can be calculated by using a 
rule-based method with the floor plan of a building. 
Various objects such as desks and chairs appear in the 
real world, and thus, a point cloud could contain parts 
of the environment that are occluded by other objects, 
and there may be parts that cannot be acquired. To 
reconstruct a whole environment without loss, 
measurement positions need to be dynamically 
determined on the basis of 3D point clouds measured 
by sensors. However, since there is variety in 
environments that affects such clouds, designing a rule 
for estimating the next optimum measurement position 
is very difficult. 

By using reinforcement learning, it is thought that a 
robot can learn strategies to select positions 
appropriate for sensors to measure three-dimensional 

 
Figure 3: Generation of Colored Point Cloud. 
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point clouds, that is, the various situations the robot in 
this research faces. 

4.1. Problem Definition 

Research on reinforcement learning mainly 
operates in a game environment or a simulation 
environment, and there is little analysis on complex 
environments in the real world. Also, in many cases, 
training is conducted in the training environments 
published by OpenAI gym [15], tested, and compared 
with existing methods. Therefore, the gap with the 
subject of this research is large. In this research, the 
next measurement position is estimated dynamically on 
the basis of data actually measured by a 3D scanner. 
The state of the environment is represented by a point 
cloud consisting of about 200,000 points, and taking 
into consideration the coordinates of the three axes, x, 
y, and z, the total number of values is 600,000. 

Also, since all spaces in which the robot can 
operate need to be considered, the dimension of the 
output of the reinforcement learning-trained model is 
high. In other words, the problem faced in this research 
shares a gap with existing research topics on 
reinforcement learning, so a solution specialized for 
complicated tasks is necessary. 

The problem is one of dynamically estimating the 
next optimum measurement position on the basis of 
already measured data. This problem is called the 
“next best view (NBV) problem.” The NBV problem is 
the problem of choosing an optimal viewpoint for 
measurement in consideration of the shape of an 
object [3,4,7,9,16]. Although the definition of the 
optimal viewpoint also varies according to the actual 
task, it is mainly studied in the field of 3D object 
reconstruction, and the NBV problem is to solve the 
task of estimating the position and orientation of a 3D 
scanner to complete the model of a 3D object. 

Although there are existing studies targeting the 
reconstruction of 3D scenes, most methods predict the 
next position that can be used to measure the most 
points, on a rule basis, with a partial 3D point cloud 
already constructed as an environment. However, 
various circumstances exist that affect information 
related to environments, and even if a measurement 
position is slightly different in the same environment, 
the measured data also differ, so it is difficult to finely 
design a rule for estimating the optimum positions one 
by one. In this research, the next optimum position is 
estimated by using a reinforcement learning-trained 
model based on data actually collected with sensors. 

However, it is difficult to directly input three-
dimensional point group data into a learning model as 
is and to determine the coordinates of the next 
measurement position directly as the output of the 
learning model. This is because the amount of three-
dimensional point cloud data is huge and the amount of 
computation involved in training processing is very 
large. In addition, to make the learned model 
understand which areas are scanned and which areas 
are not, it is necessary to input a point cloud that 
combines all point clouds so far, not the point cloud 
data of only one measurement. Therefore, the more 
input there is, the larger the amount of input data 
becomes. Since the processing becomes more and 
more heavy and the amount of useless data included in 
the input data also increases, it becomes difficult for 
the learning model to learn features from the enormous 
amount of data, and its training is difficult to converge. 

In actual three-dimensional reconstruction, the 
cause of missing parts in a point cloud can be 
considered to be due to the intervals between 
measurement positions and occlusion caused by 
obstacles. If the intervals are too large, the data 
between them cannot be measured, and if they are too 
close, the efficiency worsens, and the measurement 
time becomes longer. In many cases, missing parts 
due to intervals can be determined from the floor 
portion of the point cloud. In addition, since the scanner 
of the robot in this research is fixed at a point higher 
than common indoor obstacles, most of the parts 
occluded by obstacles are on the floor and can be seen 
from the lower part of the point cloud. Furthermore, 
since the motion of the scanning robot is limited to two 
dimensions, it is possible to significantly reduce the 
computation amount by compressing measured point 
groups into two dimensions in order to estimate 
measurement positions. 

Therefore, in this study, the following processing 
was performed on point clouds in order to compress 
measured point clouds into two dimensions and input 
them into the model.  

- Deleted the part of the ceiling that is 1 m or 
higher than the scanner. 

- Moved the point cloud down along the Z axis 
(direction of gravity). 

- Converted the projected two-dimensional point 
cloud into an image with a resolution of 1 pixel = 
0.05 cm. 
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An example is shown in Figure 4. The left side of 
the figure is the original point cloud, the middle is the 
point cloud with the upper part deleted, and the right is 
the transformed two-dimensional projection image. 

If only the data measured at one place were input, 
the information on the previous measurement positions 
would be lost, and the learning model would not be 
able to distinguish between a part measured in the 
current environment and a part not measured. In this 
research, a 2D map of an environment is generated in 
advance, a modified form of the map is input into the 
learning model as global information on an 
environment. As shown in Figure 5, this is a 
combination of a 2D map and a 2D projection image of 
data measured at each measurement position by using 
the coordinates of the measurement positions. 

The synthesized image is distinguished into 
obstacles, dangerous areas that are close to obstacles, 
scanned areas, unscanned areas, and exterior areas 
outside a building by using pixel values, and this is 
called a “progress image.” This image is input into the 
learning model. Using the image, the robot can see 
how much of the entire area was scanned up to the 
current step and how many missing parts there are. 

Also, if learning is performed with the positions of all 
areas as candidate positions, the number of action 
choices becomes considerably large, and the learning 
model does not converge. Furthermore, the number of 
candidate positions varies depending on the 
environment, so there is a problem in that the trained 
model cannot be used in different environments. 

Therefore, in this research, considering the 
measurement range of the scanner, an area of −5 m to 
5 m from the current measurement position is 
discretized every 0.5 m and used as a candidate 
position for the next measurement position. In addition, 
the closer the scanner is to a point, the more accurately 
the point can be measured, so there are few situations 
in which the data of an area close to a measurement 
position are lost, the data of an area far from a position 
become coarse, or missing parts appear. Since the 
distance between measurement positions is too small, 
there arises a problem of duplicate measurement. 

Therefore, the dimension of output can be further 
reduced by excluding positions within a range of −3 m 
to 3 m from a measurement position from among 
candidate positions. Discretizing positions within a 
range of −5 m to 5 m into 0.5 m units will result in 400 
candidate positions, and further excluding positions 
from −3 m to 3 m will result in 256 candidate positions. 
256 candidate positions can be listed from 0 to 255 
from left to right and from top to bottom. Thus, each 
element of a 256 × 1 vector output by the learning 
model can correspond to each candidate position, and 
selecting a candidate position will select the position 
corresponding to the maximum value of the vector. 

As input data in addition to the progress image, two 
feature vectors are prepared: a candidate position 
vector and a residual area vector that can be calculated 
from a progress image. The candidate position vector 
is a 256 × 1 vector representing information on 
obstacles at 256 candidate positions. As shown in 
Figure 6, it indicates whether each value corresponds 

 
Figure 4: Compression of Point Cloud Data. 

 
Figure 5: Progress Image. 
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to an obstacle at the corresponding candidate position. 
Using this feature vector, the learning model can learn 
the distinction between measurement positions that the 
robot can go to and those to which the robot cannot go. 

 
Figure 6: Candidate Position Vector. 

The residual area vector represents the size of the 
area not yet scanned around each candidate position. 
Like the candidate position vector, this is a 256 × 1 
vector, and as shown in Figure 7, for all candidate 
positions, an area within a range of 5 m is cut out as an 
observation area. Then, the learning system counts the 
number of unscanned pixels in the observation area 
and normalizes the number. By using this feature 
vector, the learning model can consider the 
circumstances of each candidate position. 

 
Figure 7: Residual Area Vector. 

Thus, the problem of efficiently scanning an area 
specified on the basis of a measured three-dimensional 
point cloud without loss is regarded as a problem of 
filling all 2D maps in a short amount of time. 

4.2. Training Learning Model in Virtual Environment 

To train a model by reinforcement learning, a large 
amount of sampling data is necessary, and it is 

necessary to repeat trial and error in environments in 
which a robot operates. However, collecting 
measurement data by moving a robot to all estimated 
measurement positions in a physical environment is 
extremely difficult and very costly. To solve this 
problem, it is common practice to train a model with 
reinforcement learning in a virtual environment in order 
to efficiently perform learning and training. In this 
research, 3D point cloud data of existing buildings were 
set as virtual environments for reinforcement learning, 
and a simulation system that combines 3D scanning 
and 2D map generation was developed. 

To implement the virtual environment of the task of 
this research, data on the environment are first 
necessary. Considering that a learning model trained in 
a virtual environment can be used for operation in a 
real-world environment, it is thought that the 
environment data need to faithfully reproduce the real-
world environment as much as possible. For this 
reason, a virtual environment was constructed by using 
real-world precise three-dimensional point cloud data 
as environment data, which was created by hand and 
with highly accurate measuring instruments. 

For the virtual environment to be used to output the 
aforementioned progress image according to the 
behavior of the robot, a 2D map must be generated 
from the point cloud of the environment data. Since 
three-dimensional point cloud data representing the 
layout of an environment are ground truth data of a 
virtual environment, it is possible to extract the floor 
and obstacles from the point cloud according to the 
coordinate values in the direction of gravity and 
generate a 2D map. 

Also, in a virtual environment, measurement needs 
to be simulated at arbitrary measurement positions. 
Considering that a large amount of trial and error is 
necessary for learning, this must be done at high 
speed. The essence of a three-dimensional scanning 
simulation is to extract points that can be measured 
from a certain viewpoint in the 3D point cloud data of 
an environment. The problem at that time is that, at 
points of the same angle, points far from the viewpoint 
are occluded by obstacles at closer points. The 
coordinates of the nearest neighbor points are difficult 
to calculate in an orthogonal coordinate system but can 
be easily calculated by converting point cloud data to a 
spherical coordinate system. 

The point cloud of an environment is downsampled, 
and it is moved so that the coordinates of the origin 
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coincide with the measurement position with respect to 
all points of a point group. Then, points within 6 m from 
the origin are extracted as observation areas, these 
points are converted into a spherical coordinate 
system, and points closest to the origin are extracted 
from the set of points at the same angle. As a result, 
measurement done by a virtual sensor is successfully 
simulated. 

In a virtual environment, it is necessary to simulate 
a sensor and not only output an observation signal but 
also give both reward and end signals to the learning 
model. Compensation as designed in this research 
consists of reward Rs for progress, reward Rk for 
number, and reward Ri for position. 

Progress Reward Rs 

The value of Rs depends on the area scanned 
effectively by a certain action of the robot 
(determination of measurement position). In a virtual 
environment, progress images of each step are 
recorded, and the scanned areas of two consecutive 
progress images are compared. Then, as the effective 
progress obtained with this measurement, a positive 
reward is given according to the number of pixels that 
has increased since the last time. 

Number Reward Rk 

A negative Rk is given for each step so that 
increasing the measurement time is not a wasteful 
strategy. 

Position Reward Ri 

If a robot cannot arrive at a measurement position 
or a position that is too close to an obstacle is 
predicted, a negative reward Ri is given. 

The learning model selects a series of 
measurement positions through several steps, and 

when an end signal is given, it terminates and initializes 
the internal state. The flow from initialization to 
termination is defined as one episode. In this study, the 
three following patterns end one episode. 

Termination Due to Limit Number 

Since the amount of time that a real-world robot can 
operate is limited, the upper limit of the number of 
times must be considered. In the training experiment in 
this study, the upper limit is set to 100, and if it exceeds 
100 steps for 1 episode, it ends. 

Termination Due to Completion 

When all areas are scanned, the episode ends. The 
robot cannot necessarily scan perfectly against an 
actual environment, and there are parts that cannot be 
measured due to the structure of the robot. Therefore, 
when parts of areas not scanned become less than a 
certain level, the measurement is terminated. 

Termination Due to Bad Position 

When the predicted measurement position is 
outside the scan area, the robot cannot arrive at it, so 
this episode ends in a measurement failure. 

The learning model of this study was trained by 
using this virtual environment. The learning model was 
a model based on the Proximal Policy Optimization 
(PPO) method [19] proposed by OpenAI. The PPO 
method outputs actions against an input state, and it 
utilizes a neural network Actor that selects actions to 
obtain the maximum reward and a neural network Critic 
that evaluates the performance of the Actor. 

The architecture of the Actor used in this research is 
shown in Figure 8. When a normalized progress image 
is inputted, high-level features are extracted while 
being downsampled via a series of convolutional 
layers. Then, the candidate position vector and the 

 
Figure 8: Neural Network Architecture of Actor. 
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residual area vector are integrated, and the probability 
of selecting each candidate position with a softmax 
function via the entire connecting layer is outputted. In 
the Critic’s architecture, the feature extraction 
mechanism is almost the same as that of the Actor. 
Features are passed through all of the connection 
layers in the latter half, and one value is output as an 
advantage. 

Using the virtual environment, the following three 
models were individually trained with 1000 episodes: 
model-none, which inputs only a progress image, 
model-semi, which inputs a progress image and 
candidate position vectors, and model-all, which inputs 
a progress image and two feature vectors. A history of 
the number of episodes and the number of 
measurements is shown in Figure 9. 

As shown in Figure 9a, model-none had few steps 
in each episode. The predicted measurement positions 
greatly departed from the scan area, and the episode 
ended. That is, the measurement positions estimated 
by model-none were often located where the robot 
could not go, so learning failed. 

In comparison, as shown in Figure 9b, when input 
included the candidate position vector, the distinction 
between arrivable and non-arrivable positions was 
efficiently learned. The position information was first 
learned, the number of steps increased to 100 at once, 
and the number temporarily stopped changing. The 
reason is that, since the maximum number of steps 
was set at 100, an area that was not measured even if 
it was measured in 100 steps remained. To maximize 
the reward, the percentage of the area measured in 
100 steps increased. After that, the number of steps 
dropped, and the robot began to measure the area 
efficiently. 

The trend in Figure 9c is similar to Figure 9b, but by 
using the residual area vector, the speed of learning 
increased. 

5. EVALUATION 

In this research, a learned model was implemented 
in the robot system described in Section 3, and on-site 
experiments were performed on automatically 
generating real-world 3D content on one floor of a 
building at Nagoya University as shown in Figure 10. 

The start position was set to the east at the right of 
the map, the robot was manually controlled, and a 2D 
map was created. Once the map was created, the 
robot automatically entered autonomous driving mode. 
It autonomously traveled to the start position, collected 
the first 3D point cloud data and panoramic image with 
the start position as the initial position, and transferred 
this information to the server PC together along with its 
own current position. Each point of the point cloud data 
and each pixel of the panoramic image were matched 
with each other on a server PC to create a 3D colored 
point cloud. In addition, the server PC compressed the 
point cloud data into two dimensions and created the 
first progress image by combining it with the 2D map. 
The progress image was input to the learned model, 
the output measurement position was transmitted to 
the robot, the robot autonomously traveled to that 
position, and the data were measured and combined 
with the previous data. This process was repeated to 
automatically reconstruct indoor 3D environments. 

Moreover, to verify the effectiveness of the method 
for estimating measurement positions proposed in this 
research, a rule-based method was implemented for 
estimating measurement positions [1] as a comparison. 
Using the robot with this method implemented, an 
experiment was conducted in the same area as before. 

As a result, 3D content was generated through 
measurement done 26 times with the reinforcement 
learning-trained model and 24 times with the rule-
based method. A comparison is shown in Figures 11 
and 12. As can be seen, the measurement positions of 
the learning model method increased the number of 

 
Figure 9: Three Cases of Learning History. 
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measurements only by two more than the 
measurement positions estimated by the rule-based 
method, but the quality greatly improved. 

To numerically compare the results of the proposed 
method and the conventional rule-based method, the 
following two indicators were used. One is the number 
of points included in the generated point cloud data, 
and the other is the average point density calculated by 
accumulating the number of points per unit volume 
(point density) with respect to all measurement 
positions. 

Before comparing, both types of data were 
downsampled with VoxelGridFilter in 0.01 m units to 
exclude duplicate points. As a result, there were 
6,526,922 points in the 3D content with the rule-based 
method and 10,776,687 points in the 3D content with 
the learning model method. For each measurement 
position, the number of neighboring points within the 
0.1 m surrounding radius was counted, and the density 
was calculated over the volume in that range. Then, the 
average value of the point density was calculated. In 
the case of 3D content with the rule-based method, it 

 
Figure 10: Overall Process of Building Scanning. 

 

 
Figure 11: Comparison in Corridor Area. 
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was 63,235.2, and in case of 3D content with the 
learning model method, it was 69,625.2. 

6. APPLICATIONS 

The purpose of this research is to automatically 
generate large-scale 3D content at low cost. Using a 
disaster simulation system for building-scale VR [14] 
created by the laboratory to which the authors belong, 
the effectiveness of the content generated by the 
method proposed in this research was verified. 

Using the game engine Unity developed by Unity 
Technologies, the 3D content created in this research 
was used as a simulation environment. The results are 
shown in Figure 13. It was confirmed that 3D content 
automatically generated at low cost with the method 
proposed in this research can be used as VR content. 

In addition to using real-world 3D content for VR 
and AR, the content can have another important role, 
that is, as an environmental map for the automatic 
movement of intelligent robots, such as autonomous 

mobile robots and drones. Using a self-driving electric 
wheelchair system developed by the laboratory to 
which the authors belong, it was verified that the 3D 
content generated in this study can be used as a 3D 
map for automatic traveling. 

Many mechanisms for moving automatically to 
specified destinations have been studied as basic 
functions of mobile robots. The basic functions include 
generating environment maps and estimating self-
positions. 3D content generated in this research was 
downsampled, and whether it could be used as a three-
dimensional map for estimating the self-position of 
wheelchairs indoors was verified. As shown in Figure 
14, an electric wheelchair equipped with 3D LiDAR was 
able to properly estimate its own position. 

7. CONCLUDING REMARKS 

In this paper, a method was proposed for realizing a 
system that can automatically convert a large-scale 
indoor environment into 3D data so that it can be used 
in VR and for automatic driving. Specifically, the 

 
Figure 12: Comparison in Other Areas. 

 
Figure 13: Building-Scale Virtual Reality. 
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problem of determining the optimal observation 
position, called the “next best view problem,” is solved 
by a more general method that combines deep learning 
and reinforcement learning. 

The problem of selecting the optimal position in a 
complex indoor environment was difficult to generalize, 
but it became a problem that could be solved by 
introducing a model trained by reinforcement learning. 

3D data on a building was collected by using the 
proposed method and compared with the conventional 
method. As a result, a clear improvement was 
observed. 

Although 3D measurement of an entire indoor area 
is very expensive, the robot used in this study can be 
easily manufactured at low cost. 

In addition, the simulator used for training in 
reinforcement learning is based on a 3D point cloud 
that has already been collected. By improving the 
accuracy of the proposed system of this research, a 
more advanced simulator can be created. This would 
create a positive cycle and contribute to the generation 
of many high-quality indoor 3D maps. 

The 3D point cloud generated in this research can 
also be used for constructing VR spaces and 
estimating the current location of autonomous driving 
vehicles. 

In the near future, real-world VR will be promoted 
and linked to various services. This research is basic 
technology for that purpose. 

In addition, not only automatic driving outside of 
buildings but also inside of buildings will be realized to 
make fully automatic logistics possible. To that end, it is 

necessary to create 3D maps of various indoor facilities 
by using the proposed method. Technology for 
automatically generating such basic data that can be 
used for many purposes will become even more 
important. 

To make the results of reinforcement learning more 
universal, incorporating more diverse indoor 
environments into the simulator is necessary. This is a 
project that would complement the creation of 3D maps 
for large cities on a global scale. To that end, it is 
necessary to make the results of this research 
available to the public so that a large number of 
scanning robots can be manufactured. As mentioned 
above, this will contribute significantly to VR services 
and fully automated logistics, so the ripple effect could 
be quite large. 
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