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µ-Planner: A Robot Path Planning Approach Based on Language 
Measure of Unsupervised Automata 
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Abstract: This paper proposes a robot path planner based on language measure, µ-planner. Workspace is discretized in 
a occupancy grid map and we model the system by considering how events, associated to robot’s motions, take it to 
different cells (discrete positions). The calculated language measure values corresponds to a gradient, which the robot 
can use reach its destination by choosing events that take it to states with higher measure values. Concepts of Lapace’s 
equation and harmonic functions are used to prove that our method guarantees both the existence and monotonicity of 
language measure. The proposed method is simple and computationally inexpensive and guarantees existence of path 
from any co-accessible state to the destination. Experiments considering different scenarios have been performed to 
validate and compare µ-planner with similar methods. 
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1. INTRODUCTION 

Path planning is one of the most basic tasks to be 
performed in mobile robot applications. Several methods 
have been proposed in the last decades to allow robots 
calculating a path from its current position to a desired 
destination [10-13, 16, 19]. 

Based on the mathematical tools used to describe 
the workspace and calculate a path taking the robot 
toward the destination, most methods can be classified 
in grid maps, roadmaps and potential field planners, 
[17]. Path planners based on both grid maps and 
roadmaps describe how a robot can move through the 
workspace using a graph, than search algorithms, such 
as Dijkstra and A*, can be used to obtain a path 
connecting the robot’s initial position to the destiny. The 
main difference in these methods is how they discretize 
workspace in nodes and define edges connecting 
them. 

Potential field methods define a potential value for 
each robot configuration (position in the workspace, for 
instance). Potential values usually are calculated 
defining repulsive forces from obstacles and attractive 
forces from destiny. 

Authors also proposed path planning methods 
based on Discrete Event Systems (DES) [2, 18, 24]. 
Most methods use automaton or Petri net structures 
and formal verification to generate paths, as sequences 
of events representing robot actions or states repre- 
senting discrete positions in the workspace. Recently,  
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methods based on language measure, [4, 5, 21, 22], 
have been proposed to calculate robot paths. The 
basic idea of language measure is to attribute a value 
to each state based on how close they are to marked 
states and how many event strings intersects on them. 

Path planners based on language measure model 
the robot possible motions through a workspace as an 
automaton, marking states representing the destiny 
and obstacles. By attributing positive values (+1) to the 
destiny state and negative (-1) to the obstacles (or 
collision) states, the methods can generate a gradient 
without local maximum (or minimum), allowing the 
robot to reach the destination from any co-accessible 
state. However, the computational cost can be quite 
high. 

This paper proposes µ-planner, a simple and 
computationally efficient method based on language 
measure. The method is able to produce paths similar 
to those obtained from [4 and 5] at much lower com- 
putational cost. µ-planner does not require a super- 
visory control to ensure the existence of numerical 
solution and absence of local minimum or maximum 
values. By defining an automaton structure that already 
guarantees both existence of a solution and its 
monotonicity, µ-planner avoids iterative processes to 
obtain a supervisory, being able to calculate language 
measure with a single matrix inversion. 

2. LANGUAGE MEASURE THEORY 

Let G = (Q,!,",qinit ,Qm )  be a deterministic finite-

state automaton (DFSA) and !̂ :Q " #* $Q  the 
extended state transition function. In addition, let Gi  be 
a version o G  in which qinit = qi !Q . 
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Definition 1. The generated and marked languages 
of an automaton Gi , L(Gi )  and Lm (Gi ) , are defined 
as:  

 L(Gi ) = {s ! "* | #̂(qi , s) !Q}         (1) 

 Lm (Gi ) = {s ! "* | #̂(qi , s) !Qm}         (2) 

Definition 2. Language L(qi ,qj )  (or simply Li, j ) 
corresponds to the set of strings starting in qi  and 
terminating in qj . Formally, L(qi ,qj )  is defined as: 

 L(qi ,qj ) = {s ! "* | #̂(qi , s) = qj !Q}        (3) 

Language L(qi ) , the set of all strings allowed in G  
from state qi , is defined as: 

 
 

L(qi ) = !
q j!Q

L(qi ,qj ) " L(Gi )         (4) 

Language L(G)  corresponds to the set with all 
strings initiating at any state of Q . Formally, we have 
that:  

 
 
L(G) = !

qi!Q

L(qi )          (5) 

The set of marked states, Qm , can be partitioned as 
Qm =Qm

+ !Qm
" , where Qm

+  represents the set of states 
we desire to reach and Qm

!  the states we have to 
avoid. 

Definition 3. The language measure function 

 µ : 2
L (G ) !!  associates a real value to a language 

L(qi ) ! L(G) , such that:  

 µ(L(qi ))
= 0, qi !Qm

> 0, qi "Qm
+

< 0, qi "Qm
#

$

%
&

'
&

         (6) 

In order to give a physical meaning to the measure 
µ  of a language L(qi ) , [22] defined it as the probability 
of reach a state in Qm

+  from a state qi , while avoiding 
states in Qm

! . 

The computation of µ  relies on three structures: 

event probability (or cost) matrix  
!! ; state transition 

probability matrix !  and the characteristic function 
! :Q" [#1,1] . 

Definition 4. For each event ! k " #  and state 
qj !Q , the probability of triggering ! k  at qj , 

 
!!(qj ," k )  

(or simply 
 
!! jk ), is defined such that:  

1. 
 
!! jk " [0,1)  and 

 
!
k

!" jk < 1   

2. 
 
!!(qj ,") = 1  and 

 
!! jk = 0  if !(qj ," k )  is undefined;  

3. 
 
!!(qj ," k s) = !!(qj ," k ) !!(#(qj ," k ), s) .  

Item (1) provides a sufficient condition to existence 
of a finite value of µ  [22]. Items (2) and (3) provide an 
iterative way to get the probability of occurring a string 
s  from a state qj . 

Considering |Q |= n  and | ! |= l , the event 
probability matrix is defined as:  

 

 

!! =

!"11 !"12 " !"1l
!"21 !"22 " !"2l
# # $ #
!"n1 !"n2 " !"nl

#

$

%
%
%
%

&

'

(
(
(
(

        (7) 

Definition 5. The probability of reaching a state qj  
from qi , with the occurrence of a single event, is 
defined as:  

 

 

! ij = "
#$%|& (qi ,# )=q j

!!(qi ,# )         (8) 

Based on (8), the state transition probability matrix 
is defined as ! |ij= " ij .  

Definition 6. The characteristic function 
! :Q" [#1,1]  allows the designer to set weights on the 
states based on its perception of the application. 
Formally, we have that:  

 !qi "Q, #(qi ) "
[$1, 0) , qj "Qm

$

(0,+1] , qj "Qm
+

0 , qj %Qm

&

'
(

)
(

       (9) 

The state weighting vector, ! -vector, is defined by 

 ! = [!1!2!!n ]
T , where ! j " !(qj ) . The signed real 

measure of a language L(qi )  is defined as:  

 µi ! µ(L(qi )) = "
q j#Q

µ(L(qi ,qj ))       (10) 

where µ(L(qi ,qj ))  is defined by (11). 
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µ(L(qi ,qj )) = !
s"L (qi ,q j )

!#(qi , s)
$

%

&
&

'

(

)
)
* j          (11) 

In [22], the authors show that Equation (10) can be 
expressed as:  

 µi =!" ij #µ j
q j$Q

+ %i        (12) 

Considering a matrix structure, Equation (12) can 
be expressed as:  

 µ =!µ + "         (13) 

The solution of (13) is given by:  

 µ = (I !")!1#         (14) 

where I  is the n ! n  identity matrix. 

After obtaining the µ -vector,  µ = [µ1µ2!µn ] , the 
system gets a metric from which it can choose the next 
action (enabled event in the plant G ). By choosing the 
event that leads to the state with higher µ  value, the 
system will be executing the string with higher 
probability to reach a state in Qm

+ .  

3. LANGUAGE MEASURE ON ROBOT PATH 
PLANNING 

In the last decades, several works on path planning 
based on language measure have been proposed. 
Next, we present a brief overview of how language 
measure have been applied in robotics. 

In [21 and 22], the authors define the basis of 
signed real language measure. Other works from the 
same research group address specific issues such as 
computational costs of the algorithms proposed to 
obtain the language measure, [20]; present proofs that, 
under some conditions, its always possible to obtain a 
finite measure µ , [23]; etc. 

An important aspect often addressed by the authors 
is how guarantee that (I !")  is an inversible matrix. In 

[23], the author redefine  
!!  based on Markov 

conditional probability and presents a method for 
estimating it that results in !  as a stochastic matrix. 

As result of the use of stochastic matrices, the 
premise 

 k! !" i k < 1  is not satisfied anymore and there 

is no guarantee matrix (I !")  is inversible. To 
circumvent such problem, the authors proposed 

choosing a convenient value of a parameter ! , such 
that 0 < ! <<1 , and calculating the language measure 
as: 

 µ(! ) = [I " (1"! )#]"1$        (15) 

The chosen !  must be small enough to guarantee 
that µ(! )  is invariant to ! , i.e. 
!qi ,qj "Q | µi < µ j#µ($ )i < µ($ ) j , and higher enough 
to guarantee that there will be no numerical problem to 
calculate the inverse. 

Chattopadhyay and Ray [6] addresses this problem 
and proposes an extension of language measure, the 
renormalized language measure. In [7], the authors 
proposed an algorithm to estimate the critical lower 
bound of ! , namely !* . 

In [4 and 5], authors proposed a path planning 
method based language measure and supervisory 
control theories. The workspace is discretized in a grid 
and it’s considered the robot can move to one of its 8 
neighbors, each motion represented by an event 
! k " #C , with  k = {1,!, 8} . Transitions to states 
representing occupied positions are allowed. However, 
once in such a state, there is a single uncontrollable 
event ! u  that can occur and taking plant G  to Ob  
state, which represents a collision with an obstacle. 
Also, the boundaries of the workspace are not 
considered in the model, i.e. there are no states 
representing them. 

Figure 1 illustrates how the workspace is discretized 
and an automaton G  representing how the robot can 
move through the workspace grid cells. The events 
representing the robot motions where suppressed to 
simplify the figure. 

 
Figure 1: Illustration of the discretized workspace and an 
automaton modeling the robot motion. 
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Formally, the system is represented by an 
automaton G = (Q,!,",#,qinit ,Qm ) . The set Q  is formed 
by states representing both the free (QF ) and occupied 
(QO ) cells in the grid map and state Ob , 
Q =QF !QO ! {Ob} . The alphabet is defined by 
! = !C " {# u}  and Qm = {qgoal ,Ob} . Finally, function 

! :Q" 2#  indicates which events are enabled at each 
state. 

The event probability matrix,  
!! , is defined based 

on the number of events enabled in each state. For 
states representing occupied positions, only event ! u  
is enabled and the probability is set as 1. Equation (16) 
presents how event probabilities are defined: 

 

!! |ik=

1
| "(qi )#$C |

, if % k & "(qi )#$C

0 , if % k ' "(qi )#$C

1 , if % k =% u & "(qi )

(

)

*
**

+

*
*
*

     (16) 

Characteristic function !  is defined as follows: 

 !(qi ) =
"1 , if qi #QO

1 , if qi = qgoal
0 , otherwise

$

%
&

'
&

      (17) 

In order to ensure global monotonicity of the 
language measure, [4 and 5] propose an algorithm to 
compute the optimal supervisor for G . Iteratively, the 
algorithm recalculates the language measure, defined 
by Equation (18), and use it to obtain the set of 
disabled transitions. 

 ! ="*[I # (1#"* )$]#1%        (18) 

where !*  is the critical lower bound of !  and !  is 
obtained according to Definition 5. 

At each iteration, the algorithm disables controllable 

transitions qi !
"

qj  such that ! i > ! j . When a transition 
is disabled, the value ! ij  is added to ! ii  (self-loop) and 

! ij  is set to 0. Then, !*  and !  are recalculated based 
on the updated ! . The algorithm terminates when the 
sets of disabled transitions ( D ) of two consecutive 
iterations coincide. Final language measure, ! # , is 
defined as the !  from the last iteration. 

Since the method ensures global monotonicity, the 
robot can navigate toward the goal by simply moving  
 

from its current position to its neighbor with the highest 
! #  value. 

Other works focusing in specific aspects such as 
localization uncertainties, smoother paths, efficient re-
planning and navigation without global positioning 
facilities have been proposed, [3, 8, 9, 14 and 15]. 
However, as these works are based on the same 
framework to calculate ! , we do not present them in 
this paper. 

4. PROPOSED METHOD 

In this paper, the path planning problem is also 
addressed considering a language measure approach. 
However, we define event probability matrix  

!!  in a 
way that guarantees the existence of matrix (I !")  
inverse and that µ , defined by Equation (14), 
corresponds to a globally monotonic gradient. 
Specifically, we propose a definition for event 
probability matrix  

!!  that results in a µ  function that 
holds maximum and minimum principle. By doing so, 
our method does not need to calculate neither a !  
value nor a supervisor, making it computationally 
inexpensive. 

Maximum and minimum principle states that there is 
no local (or even global) maximum or minimum in the 
gradient inner region [1]. The maximum and minimum 
values occurs only in the boundary region and critical 
points. In path planning applications, the boundary 
region, !" , corresponds to the workspace borders and 
obstacles. A single critical point represents the 
destination. 

Let G = (Q,!,",#,qinit ,Qm )  be an automaton 
representing how the robot can move through a 2-D 
workspace and  ! = {"1,!," 8}  the event set, as 
illustrated in Figure 2. Also, let the set of states be 
defined as a partition Q =Qf !Qo ! {qgoal} , in which Qo  
is the set of states representing positions in !"  and 
Qf  the states in the free space region. In this paper, 
we propose a µ  function definition, presented in 
Equation (19), that satisfies the maximum and 
minimum principle. 

µ(qi ) =

1
8 !

" k#$(qi )

µ(%(qi ," k )) , if qi #Qf

K1 if qi #Qo

K2 if qi = qgoal

&

'

(
(
(

)

(
(
(

     (19) 



44     International Journal of Robotics and Automation Technology, 2020, Vol. 7 Filho et al. 

 

Figure 2: Events associated with the robot’s motion. 

where K1  and K2  are chosen constants that just need 
to be different. If K2 > K1 , the language measure grows 
toward the destiny 

Proof. The classical example of functions that holds 
maximum and minimum principle are the harmonic 
functions. Thus, the µ defined by Equation (19) being a 
harmonic function is a sufficient, but not necessary, 
condition to ensure the maximum and minimum 
principle. 

Let  ! :Q!"2  be a function that maps a state qi  to 
its position (x, y)  in the grid cell and µ(qi ) ! µ(x, y) , if 

 !(qi ) = (x, y) . 

A harmonic function is a solution for Laplace’s 
equation, defined by Equation (20) for a 2-dimensional 
space: 

!2U(q) = "
2U
"x2

+
"2U
"y2

= 0, #q = (x, y) $ %      (20) 

where U(q)  is a harmonic function defined over region 
! . 

To solve Laplace’s equation in discretized environ- 
ments, the partial differential equations are often 
replaced by finite difference equations, an approxima- 
tion obtained by Taylor series around a point (x0 , y0 ) . 

By considering µ(x, y)  as a Talyor series limited to 
second-order (around x0  and y0 ), we have that: 

µx,y = µx0 ,y0
+ (x ! x0 )

"µ
"x
(x0 , y0 )+ (y ! y0 )

"µ
"y
(x0 , y0 )

+
(x ! x0 )

2

2
"2µ
"x2

(x0 , y0 )+
(y ! y0 )

2

2
"2µ
"y2

(x0 , y0 )

+(x ! x0 )(y ! y0 )
"
"x

"µ
"y
(x0 , y0 )

     (21) 

Evaluating (21) for !x > 0  and !y > 0  on both sides 
of x0  and y0 , we can rewrite Equation (20) as a finite 
difference equation centered in ( x0 , y0 ): 

!2µ(x, y) = "
i, j#{$1,0,1}
i%0 or j%0

µ(x0 + i&x , y0 + j&y )

$8µ(x0 , y0 ) = 0

     (22) 

Considering !x = !y =1  (smallest displacement in 
the grid cell), Equation (22) can be rewritten as: 

 
µx!1,y!1 +µx,y!1 +µx+1,y!1 +µx,y!1 +µx,y+1

+µx+1,y!1 +µx+1,y +µx+1,y+1 ! 8µx,y = 0
     (23) 

Thus, for each position that is not a critical point or 
inside the boundary region, the µ  value can be 
calculated based on (23). Analysing Equation (23), one 
can notice it corresponds to the first line of our µ  
definition, presented in Equation (19). 

Considering Dirichlet’s condition [1], we can set 
constant values to the potential of points in !"  and of 
critical points, such as: 

 U(q) =
K1 ,!q " #$

K2 ,q = qgoal

%
&
'(

      (24) 

in which  K1,K2 ! !  are chosen constant values. 

Notice that Equation (24) corresponds to the remain- 
ing lines of Equation (19). Harmonic functions proper- 
ties also guarantees that the magnitude of | K2 ! K1 |  
does not influence the gradient directions. Thus, for 
any K2 > K1 , the generated path will be the same.       

Our goal, then, is to propose a formulation to  
!!  

such that state transition matrix !  and characteristic 
function !  results in the µ(qi )  definition from (19). To 
do so, we define automaton G  transitions allowing only 
events taking the robot to a neighbor in Qf . Formally: 

 !(qi ," k ) =
qj , if qi ,qj #Qf

undefined , otherwise
$
%
&

     (25) 

Based on automaton G ,  
!!  can be defined as: 

 

 

!! |ik=
1
8

, if " k # $(qi )0.1cm

0 , otherwise

%

&
'

('
      (26) 

The characteristic function !  is defined as follows: 
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 !(qi ) =
K1 , if qi "Qo

K2 , if qi = qgoal
0 , otherwise

#

$
%

&
%

      (27) 

Thus, the system defined by Equation (19), for all 
q !Q , can be represented by:  

 µ = µ!+"         (28) 

As presented in section 2, µ  can be obtained as: 

 µ = (I !")!1#         (29) 

However, our automaton G  and  
!!  definitions 

guarantees both the existence of a numerical solution 
for the system and monotonicity of the obtained µ . 

The path taking the robot from its current position to 
destination can be obtained as sequence of neighbor 
states with highest µ  value. Formally: 

  path = [q1q2!qn ]        (30) 

where q1 = qinit , qn = qgoal  and qj+1 = !(qj ," ) , such that 
! = max

! k"#(q j )
µ($(qj ,! k )) . 

Next, we present the experiments performed in 
order to evaluate the similarity of the plans obtained 
from µ-planner with those obtained using !*  path 
planning. 

5. RESULTS AND DISCUSSIONS 

In order to validate the proposed method and 
evaluate the quality of paths it generates, we perform 
experiments considering different workspaces and 
robot positions. The path planner proposed by [5], ! * , 
is also implemented and used to generate paths in the 
same scenarios. Both methods are compared based on 
the time necessary to calculate the language measure 
vectors and the similarity of the paths. All experiments 
were performed using a PC with 4 GB of RAM and 
Processor Intel I3 running Linux Mint (18.2). Next, we 
present the metrics used to evaluate the paths. 

5.1. Metrics 

Paths are compared regarding four metrics: number 
of steps, length and minimum and average distance to 
obstacles. Number of steps, nsteps , corresponds to the 
number states in the path, while the length, plen , is the 
real distance the robot have to move. These metrics 
can be defined as: 

 nsteps =| path | !1        (31) 

 
 
plen = !

i=1

nsteps

!(qi+1 )" !(qi )       (32) 

where qi ! path  is the i -th state in the path,  !(qi )  
corresponds to qi  position in the grid and operator !  
is the Euclidean distance. 

Regarding the distance to obstacles, let dco (qi )  be 
the Euclidean distance between qi ’s cell (position in 
the grid map) and the closest obstacle. The minimum, 
dmin , and average, d , distances to obstacles can be 
defined as: 

 dmin = min
qi!path

dco (qi )        (33) 

 d = 1
| path | !qi"path

dco (qi )        (34) 

Figure 3 illustrates part of a path and the distance 
between each cell in the path and its closest obstacle. 

 

Figure 3: Path length and distances to obstacles. 

5.2. Experiments 

We performed experiments in three different 
workspaces, presented in Figure 4. For each 
workspace, a destiny and 10 different initial positions 
were randomly chosen. Then, the proposed method 
and ! *  path planner were used to calculate paths for 
each configuration. For simplicity, we chose K1 = !1  
and K2 = 1  for our method. 

Additionally, we calculate paths using ! *  algorithm 
with constant (arbitrary) values of !  (10!2  and 10!3 ). 
Thus, one can observe the impact of !  values in path 
generation and the cost of calculating !*  (lower bound 
of ! ) at each iteration. 
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Figure 4: Workspaces considered in the experiments. 

Figures 5, 6 and 7 present the paths, for a single 
(qinit ,qgoal )  configuration, generated by the proposed 

method and ! * .  

 
Figure 5: Experiment in workspace prone to local minimum. 

 

Figure 6: Experiment in cave like workspace. 

 

Figure 7: Experiment in workspace with scattered obstacles. 

Table 1 presents the data of trials for a single 
(qinit ,qgoal )  configuration (shown in figure 5) of the 
experiment with workspace prone to local minimum. 
The critical lower bound, at the last iteration, was 
!* = 9.2 "10#12 . 

Tables 2 and 3 presents the data of the trials shown 
in Figures 6 and 7, respectively. The critical lower 
bound in these experiments were !* = 3.6 "10#14  and 
!* = 9.1"10#15 , respectively. 

For each experiment, different initial positions are 
considered, so the number of steps and length of paths 
vary widely in trials. Thus, we compare paths obtained 
from ! *  path planner and the proposed method by 
calculating the difference of steps, length and distance 
to obstacle for each trial. Table 4 presents the average 
value and standard deviation of these differences. 

5.3. Discussions 

Both Figures 5, 6 and 7 and Tables 1, 2, 3 and 4 
show the proposed method generate paths similar to 
those obtained using ! *  path planner. For instance, in 
experiments with the workspace prone to local 

Table 1: Results of Experiments in a Workspace Prone to Local Minimum 

 Time (s) nsteps  plen  dmin  d  

Proposed   0.084 ± 0.001    21   28.04   1   1.34 ± 0.50   

!*    1.590± 0.025    23   30.87   1   1.27± 0.47   

!*  ( ! = 10"3 ) 0.995± 0.098    23   30.87   1   1.27± 0.47   

!*  ( ! = 10"2 )  0.957± 0.031    21   28.87   1   1.25± 0.46   
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minimum, the difference in the number of steps is 1±1 . 
Such value represents less than 0.5%  of nsteps , for the 
paths presented in Figure 5. Regarding the distance to 
obstacles, the difference is less than 1 cell unit. 
Differences increases a little for workspaces with 
scattered obstacles, due to the higher number of 
possible paths, but it still less than 1%  of the values 
presented in Table 3. 

On the other hand, Tables 1, 2 and 3 show that, as 
the workspace’s size increases, ! *  path planner 
becomes computationally expensive due to !*  
calculation. Notice that, when !  is previously defined, 
the time necessary to execute ! *  decreases 
significantly. 

Another important aspect is that, for both the 
proposed method and ! *  path planner, diagonal 
motions “cost” the same as an one direction motion 
(up, down, left or right). So, “unecessary” diagonal 
motions may occur in the generated paths, as in ! * ’s 
path shown in Figure 7. However, by defining !  matrix 
based on Laplace’s equation, the proposed method 

generates smoother paths (as can be better illustrated 
in Figure 6), usually keeping farther away from 
obstacles. 

6. CONCLUSIONS 

This paper presents a path planning method based 
on language measure of unsupervised automata. By 
considering path planning problem from both DES and 
the maximum and minimum principle viewpoints, we 
propose a methodology to define the event probability 
matrix,  

!! , that guarantees existence of a numerical 
solution for µ = (I !")!1# . 

Additionally,  
!! ’s definition guarantees the 

monotonicity of the solution. Thus, language measure 
µ  can be view as a gradient without local maximum (or 
minimum) and, from any free cell, it’s possible to 
generate a path to destiny by iteratively choosing the 
neighbor with highest µ  value. Also, changes in the 
workspace can be handled online by adding/removing 
transitions in automaton G  and recalculating µ , since 
µ-planner is computationally inexpensive. 

Table 2: Results of Experiments in a Cave Like Workspace 

 Time (s) nsteps  plen  dmin  d  

Proposed   1.10± 0.01    79   104.68   1.4   3.64 ±1.2   

!*    609.1± 2.7    75   99.85   1   2.99±1.92   

!*  ( ! = 10"3 ) 25.83± 0.52    75   100.68   1   2.86±1.92   

!*  ( ! = 10"2 )  25.89± 0.093    75   99.85   1   2.88±1.93   

 

Table 3: Results of Experiments in a Workspace with Scattered Obstacles 

 Time (s) nsteps  plen  dmin  d  

Proposed   1.00± 0.04    48   60.43   1   1.98± 0.72   

!*    242.2± 4.0    46   61.74   1   1.81± 0.59   

!*  ( ! = 10"3 ) 28.46± 0.59    45   61.98   1   1.81± 0.63   

!*  ( ! = 10"2 )  27.87± 0.41    45   60.33   1   1.81± 0.60   

 

Table 4: Summarized Results for all (qinit ,qgoal )  Configurations Considered in the Experiments 

Workspace !steps  !len  !d  

Local minimum   1.00±1.05    1.05±1.00    0.076± 0.208   

Cave like   1.80±1.32    2.46±1.08    0.71± 0.23   

Scattered obst.   3.3± 3.2    3.69± 3.30    0.24 ± 0.18   
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Experiments with several workspaces show µ-
planner generates paths similar to those obtained using 
! *  planner. However, since our  

!!  definition already 
guarantees existence of solution, there is no need to 
iteratively compute a supervisor and !  values, which 
decreases greatly our method computational cost. 
Specifically, µ-planner considers a single matrix 
inversion to calculate µ  language measure vectors. 

6.1 Future Works 

In future works, strategies to smooth generated 
paths and better cope with dynamic environments, as 
those proposed in [3 and 15], will be addressed. 
Additionally, other  

!!  definitions will be studied, in 
order to allow considering different “costs” for diagonal 
motions. 
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