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Abstract: Since, Dual Metal Gate (DMG) technology alone is not enough to rectify the problem of low ON current and 
large ambipolar current in the TFET, therefore, a novel TFET structure, known as dual metal triple-gate-dielectric 
(DM_TGD) TFET, has been proposed. We have combined the dielectric and gate material work function engineering to 
enhance the performance of the conventional FET. In the proposed structure, the gate region is divided into three 
dielectric materials: TiO2/Al2O3/SiO2. This approach is chosen because high dielectric material alone near the source 
cannot improve the performance due to increase in fringing fields. This paper presents the detail processing of the 
proposed structure. We have evaluated and optimized the dc performance of the proposed N-DM_TGD TFET with the 
help of 2-D ATLAS simulator. The results were compared with those exhibited by dual metal hetero-gate-dielectric TFET, 
single metal hetero- gate-dielectric TFET and single metal triple-gate-dielectric TFET of identical dimensions. It has been 
observed that the DM_TGD device offers better transconductance (gm), lower subthreshold slope, lower ambipolar 
current and larger ON current. 
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1. INTRODUCTION 

Earlier, miniaturization of MOSFET was the effective 
way to improve the performance of the circuit but in 
post scaling era the miniaturization of device is not 
becoming effective due to increased leakage current 
and short channel effects (SCEs) [1-3]. To overcome 
these limitations, researchers have proposed many 
different structures rather than planar in the literature 
[4-6] particularly multi gates devices and devices 
fabricated using different materials to replace the 
standard CMOS technology [7-9]. In nanoscale era, 
leakage current is major problem in the device which 
modifies the stable performance of the devices; 
therefore, suppression of leakage current without 
compromising the ON current is the major challenge. 
To control the leakage current, nanowire transistors 
have been proposed [10-12]. Among these, tunnel field-
effect- transistors (TFETs) are considered one of the 
future devices to replace the planar MOSFETs [13-14]. 
Although TFET, possess lower subthreshold slope (SS) 
(< 60 mV/decade) at room temperature, but still, suffers 
from two main drawbacks; lower ON current and larger 
ambipolar current [15-16]. The ON current of TFET 
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device can be increased by using high k- dielectric 
material as a gate insulator [17] on the cost of 
increased Iamb whereas TFET with gate-drain overlap 
structure have been proposed to reduce ambipolar 
current [18] on the cost of reduced chip density. In 
literature, hetero- dielectric gate (HDG) TFET is 
proposed to overcome these two shortcomings after 
using a high-k material partially near source to enhance 
the ON current and SiO2 near drain to suppress the 
ambipolar current [19]. Although. HfO2 has a 
reasonably high dielectric constant (~25) and a relatively 
large band gap (5.68 eV) but it is very difficult to convert 
pure HfO2 from amorphous to polycrystalline structure 
during the post- annealing treatment and also having 
poor interface quality with Si [20] which can be 
improved by incorporation of nitrogen in HfO2 on the 
cost of lower dielectric constant [22]. Due to these 
reasons, the application of other metal oxides, with a 
dielectric constant higher than 25, in TFET device is 
very important. Titanium dioxide (TiO2) appears as one 
of the alternative gate dielectric material to replace 
HfO2 even though it has relatively small band gap (3.5 
eV) [22]. Since, it is difficult to find a single oxide which 
satisfies high dielectric constant, low interface trap 
density, high thermal stability, for future gate dielectric, 
hence bilayer gate dielectrics is an alternative option. 
Researchers have used titania and alumina as 
reinforcements to improve the dielectric constant [23]. 
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In the proposed structure, we have chosen TiO2/Al2O3 

dielectric materials near the source and SiO2 near drain 
[24]. According to researchers [25-26], dual metal gate 
(DMG) structures, having different work function metals 
(tunneling gate near source and auxiliary gate near 
drain), are effective way to reduce SCEs in the TFET 
device without any adverse effect. By considering the 
advantages associated with heterogeneous dielectric 
and DMG, this paper presents the combination of both 
engineering aspects to improve the performance of the 
TFET. The structure of this paper is given as follows: 
Section II describes the device structure, and the 
process flow steps. Section III describes the simulation 
results and discussion whereas section IV concludes 
the paper. 

2. DEVICE STRUCTURE AND PROCESS FLOW 

 

Figure 1(a): Structure of DM_TGD TFET [24]. 

The processing of the proposed structure (Figure 
1(a)) has been done using 2-D Silvaco ATHENA and 
ATLAS. The process steps follow the standard CMOS 
process in which P- type (100) SOI structure (tsoi=10 
nm, tbox=3 nm) has been chosen to restrict the 
leakage current. On the top of intrinsic silicon oxide 
layer has been grown. The asymmetric source and 
drain doping profiles are obtained by ion implantation of 
boron dose of 1.0e20 cm-2 at 1 KeV (Figure 1(b)(i)) 
and phosphorous dose of 1.0e18 cm-2 at 5 KeV (Figure 
1(b)) using nitride mask layer. This also results in steep 
junction profile as shown in Figure 1(b)(ii). Since, the 
proposed structure’s gate has been divided into three 
dielectric materials of thickness of 3 nm, we have first 
deposited TiO2 near source (Figure 1(c), second 
dielectric layer of Al2O3 is deposited using atomic layer 
deposition (ALD) (Figure 1(d)) and finally third layer of 

 

Figure 1(b)(i): Source region implantation. 

 

Figure 1(b)(ii): Drain region implantation. 

 

Figure 1(c)(i): TiO2 Dielectric deposition. 

 

Figure 1(c)(ii): TiO2 Dielectric etching process. 
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SiO2, near drain, is deposited. After depositing each 
dielectric material on gate, we have performed selective 
etching to remove the unwanted layer (Figure 1(e)). 
The first gate material is etched with a carefully 
controlled manner and then a second gate material is 

formed using conventional deposition process. The 
thickness of auxiliary gate and tunneling gate is 5-nm 
(Figure 1(f)). Next, using PECVD process, we have 
formed sidewall spacer after deposition and etching of 
TEOS layer. We have used sputtering method to put 
Al-metal on the gate and at the source and drain 
contacts. Metal pads are defined by photolithography 
and etch process. The overall fabricated structure of 
the proposed device is shown in Figure 1(g) [24]. 

 

Figure 1(f)(i): Auxiliary gate formation. 

 

Figure 1(f)(ii): Tunneling gate formation. 

 

Figure 1(g): Final Structure of the proposed TFET [24]. 

3. SIMULATION RESULTS AND DISCUSSION 

We have performed simulations of the proposed 
structure using 2-D Silvaco ATLAS tool. We have 
considered the non- local BTBT model, the band gap 
narrowing model, Fermi- Dirac statistics, Shockley-

 

Figure 1(d)(i): Al2O3 Dielectric layer deposition process. 

 

Figure 1(d)(ii): Al2O3 Dielectric layer Etching process. 

 

Figure 1(e)(i): SiO2 Dielectric layer deposition process. 

 

Figure 1(e)(ii): SiO2 Dielectric layer Etching process. 
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Read-Hall (SRH) recombination and Lombardi mobility 
model during simulation. The values of various 
parameters during simulation were taken as; gate 
length Lg (LTiO2+, LAl2O3+LSiO2)= 60 nm, work function of 
two gate metals are 3.9 eV and 4.3 eV, tox= 3 nm, 
tsi=10 nm (hence quantum mechanical effect has been 
ignored in this study). ON-current (Ion) in this paper 
has measured as the drain current when Vgs=Vds=1 V 
whereas ambipolar current (Iamb) is defined as the 
drain current when Vgs=-0.2 V and Vds=1 V. 

Table 1 gives the simulation results for various 
combinations of triple dielectric materials as an 
insulator for the proposed structure at Vds=1 V and 
Lhighκ 

 (ZrO2/HfO2/TiO2)= 20 nm, LAl2O3=10 nm and 
LSiO2=30 nm, Ltunnel=Laux=30 nm. From simulation 
results, it is observed that TiO2/Al2O3/SiO2 combination 
as a gate insulator gives about 10% decrease in 
subthreshold swing SS, significant increase in ON-
current and reduction in ambipolar current compared to 
other combination. These improvements are due to 
reduced EOT which results in better gate coupling at 
the source- channel interface and lower leakage 
current. 

Due to the better performance in terms of ON 
current, ambipolar current and SS, we have chosen 
TiO2/Al2O3/SiO2 as a gate insulator for the further 
investigation of the electrical performance of DM_TGD 
TFET. 

From simulation results, it has been observed that 
when LTiO2=20 nm, LAl2O3=10 nm and LSiO2= 30 nm, 
larger ON current and lower ambipolar current results 
in proposed structure. This is due to fact that as LTiO2 

decreases, the conduction band (CB) well becomes 
shallower which makes band-to-band tunneling difficult 
to occur. Therefore, LTiO2=20 nm is the better choice for 
the performance improvement. After selecting the 

proper dielectric lengths, we simulated the TFET for 
optimizing the lengths of tunnel gate and auxiliary gate. 

In TFETs, the electric field plays a very vital role in 
improving the ON current of the device. As the electric 
field increases at the tunnel junction, the tunneling 
probability of the electrons increases, thereby resulting 
in larger tunneling current. Figure 2(a) shows that the 
peak electric field occurs near the tunneling junction 
irrespective of the choice of auxiliary and tunneling 

Table 1: Comparison of SS, Iamb and ION for Three Different Combinations of Dielectric Materials 

 

Type of Combination Average SS (mV/Decade) Iamb (pA/µm) Ion (µA/µm) 

ZrO2-Al2O3-SiO2 47.2 1.82 7.6*10-2 

HfO2-Al2O3-SiO2 47.3 1.82 7.6*10-2 

Proposed (TiO2- Al2O3-SiO2) 42.7 0.181 1.11 

TiO2-ZrO2-SiO2 42.8 1.82 1.04 

TiO2-HfO2-SiO2 42.8 1.82 1.04 

 

 

Figure 2 (a): Lateral electric field for different tunnel gate and 
auxiliary gate lengths. 

 

Figure 2(b): Band diagram for different combinations of 
tunnel length and auxiliary length. 
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lengths. It is also observed that when Ltunnel=40 nm and 
Laux=20 nm, electric filed takes lower value compared to 
the other combinations near the drain which suppress 
the ambipolar current in the device. The larger electric 
field near the source-channel junction narrows the 
tunneling width as shown in Figure 2(b) which results in 
larger tunneling current (Figure 2(c)). 

 

Figure 2(c): ON current for different combinations of tunnel 
and auxiliary lengths. 

 

Figure 2(d): Ambipolar current variation with gate voltage for 
different tunnel-gate work function. 

The variation of ambipolar current (Iamb) with Vgs 
for different tunnel-gate work function is shown in 
Figure 2(d). The lower work function metal near source 
increases the band overlap which result in increased 
tunneling probability of electrons from valence band to 
conduction band of the channel. 

Performance Comparison 

After selecting the optimized values of the 
parameters, we have compared our proposed structure 
with dual metal hetero- gate-dielectric TFET and the 

results of various electrical performances are given in 
Table 2. The proposed device gives higher ON current, 
lower subthreshold slope and ambipolar current 
compared to the dual metal hetero-gate dielectric TFET 
due to high effective dielectric constant, high interface 
quality and reduced insulating barrier near the source-
channel junction which increases the probability of 
tunneling. 

Table 2: Comparison with Hetero-gate Dielectric TFET 

Different Combinations SS 
(mV/decade) 

Iamb, 
(pA/µm) 

Ion 
(mA/µm) 

Proposed (TiO2-Al2O3-SiO2) 42.7 0.181 11.01 

DMGHD (TiO2-SiO2) 56 1.3 10.10 

DMGHD (HfO2-SiO2) 47 0.6 7.60 

DMGHD Stack 77 16 1.80 

 
The electric filed in the proposed structure 

increases considerably compared to the single gate 
triple dielectric materials on the cost of slightly 
increased ambipolar current. Due to increased electric 
field in the proposed structure, the conduction as well 
as valence bands move upwards. This upward shift of 
the band reduces the tunneling width compare to other 
structure (Figure 3(a)). Since, the generation rate 
exponentially increases with the electric field, hence an 
increase in electric field increases the generation rate 
which results in larger ON current (Figure 3(b)) in the 
proposed TFET structure. This study only confirms that 
by combining the advantages of triple dielectric 
materials and dual metal gate in realizing the TFET 
structure, one can improve the performance of the 
device. 

 

Figure 3(a): Band Diagram for various TFET structures. 
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Figure 3(b): ION comparison for different structures. 

Transconductance of the device plays a crucial role 
in determining the cut-off frequency. The variation in 
transconductance w.r.t. the gate voltage is shown in 
Figure 3(c). The proposed TFET structure exhibits 
higher transconductance compared to the single 
metal/dual metal hetero-gate-dielectric TFET because 
of increase in tunnelling probability at the source-
channel junction and controlled leakage current as well 
as lower trap density. 

 

Figure 3(c): Variation of gm with Vgs for proposed and 
Hetero-dielectric TFETs. 

4. CONCLUSION 

A TFET device with dual metal triple-gate-dielectric 
tunnel configuration is presented for the suppression of 
ambipolar current with improved ON current and 
reduced short channel effects. The combination of 
dielectric and gate engineering approach not only 
increases the ON current compared to the dual metal 
hetero-gate-dielectric TFET but also reduces ambipolar 

current, enhances the transconductance and reduces 
the threshold voltage. The device is fabricated with 2-D 
Silvaco ATHENA tools based on the optimized 
parameters and simulated with ATLAS simulator. The 
choice of lateral combination of TiO2 and Al2O3 side 
by side as a gate insulator near source reduces the 
fringe field and enhances the coupling between gate 
and source which results in increase of the ON current. 
The dielectric combination near the source also 
reduces the insulating barrier, trap charge density at 
the source and produces the high interface quality with 
reduced leakage current. In future it is required to 
develop compact analytical models to characterize the 
proposed structure. These models should be 
incorporated into spice simulator for deep 
understanding of the proposed device. 
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