
114 International Journal of Robotics and Automation Technology, 2022, 9, 114-123  

 
E-ISSN: 2409-9694/22 

Study on Desktop Smart Production Line and Diagnosis 
Technology 

Tzu-Chi Chan1,*, Jyun-De Li1, Yi-Fan Su1, Yi-Hao Chen1, Zhong-Rui Chang1, Teng-Chieh 
Chang1, Chen-Yang Hung1, Chui-Chan Chiu1, Arindam Dutta1 and Sabbella Veera Venkata 
Satyanarayana Reddy1 

1Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin County 
632, Taiwan, R.O.C  

Abstract: Smart manufacturing is a development tendency in the manufacturing industry. Thus, this study aimed to 
construct a desktop smart production line using a virtual and a real system. The data measured by various sensors were 
collected and combined with an intelligent predictive diagnosis system to achieve online diagnosis, analysis, and 
prediction of the health status of the machine. We designed an interactive information collection service for the 
convenience of users. We allowed users to obtain specific information easily and quickly, improve the convenience of 
controllers and devices, and meet the need for long-term monitoring. Moreover, we focused on reducing production 
scenarios from cell manufacturing to factory product inspection using robotic arms, three-dimensional printers, and small 
and complex processing machines with intelligent predictive diagnostic systems. In this regard, the visual recognition 
function of the robotic arm can perform a product appearance inspection. Finally, in the machine network platform 
integrating all the controllers, when the machine fails, the information is sent to the user in real time through the 
communication service software, and the operator can take corresponding measures depending on the warning actions 
received, such as remote control of the machine, to ensure production efficiency and quality. 

Keywords: Machine networking platform, Visual recognition, Predictive diagnostic performance system, Principal 
component analysis. 

1. INTRODUCTION 

The Internet of Things (IoT) can be applied to the 
manufacturing industry to connect machines, sensors, 
and personnel information in the factory, save and 
analyze data through big data and cloud platforms, 
improve the base station configuration and optimization 
of small factories, and improve service reliability, as 
discussed by Liu et al. [1]. Tao et al. [2] indicated that 
the development of the industry will be deeply affected 
by artificial intelligence when transforming from 
traditional to intelligent manufacturing, thus seeking to 
make future manufacturing systems more resilient. 
Considering machine vision, Xiang [3] used automatic 
assembly to discuss positioning accuracy, and 
observed that a large offset and low positioning 
accuracy affected the smoothness of the assembly, 
which indicates the importance of positioning accuracy. 
Gongal et al. [4] developed a mechanical vision system 
composed of a three-dimensional (3D) camera and 
applied it to the screening of orchard apples. Through 
this system, the size of apples in the canopy can be 
estimated, effectively helping producers manage their 
farms, improving the performance of agricultural 
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machinery, and reducing labor dependence. Lee et al. 
[5] proposed an advanced information analysis 
combined with the IoT to effectively increase machine 
efficiency, and transformed their big data system into a 
tool for predictive analysis and deliberation. LaCasse et 
al. [6] conducted feature screening for data and 
identified the features of large and complex data 
through feature quantification to produce simple and 
meaningful results. Fujishima et al. [7] offered a 
detailed introduction to innovative methods of sensing 
technology. To improve cutting efficiency, using the 
new coolant sensor as an example, a large amount of 
data was collected, the improvement of the cutting 
efficiency by the new sensor was enabled, and a large 
amount of cutting data was obtained. Farid et al. [8] 
proposed a measurement method for an axiomatic 
design knowledge base and structure matrix for use in 
an automated manufacturing system, and employed a 
large-scale flexible system to solve the configuration 
problem, which explains how to reconstruct the 
measurement requirements in an automated intelligent 
manufacturing system. Qureshi et al. [9] indicated that 
the combination of cognitive radio and IoT technology 
reduces the time required for data calculation, and can 
increase the level of data transmission and 
transmission speed, such that the IoT can be used by 
many users and thus solve the problem of big data 
management. Kumar et al. [10] studied the effect of the 
color of the light source on the surface roughness. 
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Moreover, they used a self-developed machine vision 
system to capture light sources of different colors and 
apply them on a 3D printed workpiece, determined the 
difference in the surface texture characteristics of the 
workpiece, and compared the results. Wang et al. [11] 
proposed a machine vision method for product quality 
detection, which removed content irrelevant to the 
image background through Gaussian filtering, and 
introduced reverse residual blocks as the basic 
construct of neural networks, effectively reducing 
model size and offloading calculations, and improving 
detection accuracy and overall calculation efficiency. 
Fantoni et al. [12] discussed the importance of gripping 
equipment in the automated production process, 
categorizing gripping equipment for different industries, 
and monitoring the effects of different sensors on the 
gripping jaws; finally, they summarized and explained 
the new tendency of gripping equipment, alluding to the 
future use of robotic arms in the automated production 
process. Zhang et al. [13] indicated that the complexity 
of the environment and the diversity of objects hinders 
the accurate determination of the appearance of 
objects by robots. Therefore, they used auxiliary 
markers to perform rough positioning and deep 
learning for the sake of multi-target detection and to 
plan motion trajectories to enable the robot to 
effectively grasp an object. Min et al. [14] studied the 
rail surface profile and rail position using LabView, 
developed a program and a defect detection system, 
and obtained defect characteristics by tracking the 
direction chain code; moreover, they detected the 
position of the target area, such that the best value 
could be obtained. Dong et al. [15] developed a 
dynamic principal component analysis method to model 
dynamic data through the covariance of components 
and predicted values. To achieve real-time monitoring, 
dynamic changes were separated from static changes 
to improve the reliability of fault detection. In intelligent 
manufacturing, parts are worn during the operation of 
the mechanism, which indirectly affects their fatigue 
life. To predict the fatigue life of the mechanism, Bi et 
al. [16] modeled and measured the wear and fatigue 
life of a screw actuator via the Adhesive Wear 
Archhard's law. Based on the amount of wear, they 
found that the sliding speed, external lubrication, 
interface temperature, material properties, and loading 
cycle affected the fatigue life. Chan et al. [17] 
developed a process for instant monitoring of the mean 
time prior to degradation. The principal component 
analysis (PCA) method can determine the main basis 
vector of the data features. We developed a miniature 
machine tool health monitoring application to monitor 

the machine health online in the context of an actual 
application. Tripathi et al. [18] proposed an innovative 
agile model using the lean, smart, and green approach 
to improve operational performance within the limited 
constraints of Industry 4.0. Azizi [19] proposed two 
artificial intelligence optimization paradigms that can 
optimize a series network. Zhang et al. [20] proposed a 
new behavioral property of the manufacturing system, 
resilience, which is discussed. 21. García et al. 
[21] proposed a systematic review of the literature, to 
determine the trends in emergent control in the context 
of industry 4.0, and the challenges and future 
directions. 

This study focuses on intelligent networking and 
health diagnostics. Smart prediction is based on 
measuring the machine vibration and the vibration 
generated by an external force during on-site 
processing using an accelerometer and feeding back 
the measured vibration signal to the intelligent pre-
diagnosis system of the computer, all in real time. The 
line graph allows managers to monitor the health of the 
machine at any time. A detection technology that 
determines the surface or contour of a product via non-
contact optical equipment and then uses computer 
image processing to check the product’s surface 
defects or determine the contouring is often used in 
automated factories to improve the traditional 
measuring approach based on human eye, brain, and 
hand movements. Visual sensing equipment is used to 
detect product defects, identify product types, and 
classify products. When the machine is abnormal in 
processing, abnormal alarm information can be sent to 
the manager in real time such that the manager can 
obtain first-line information and control the status of the 
production line at any time. A remote monitoring 
system to achieve intelligent production lines was 
developed in this study. The developed smart 
networking platform and a small analog production line 
remotely monitored the working conditions of the 
production line through mobile communication 
applications, allowing managers to receive station 
information at any time, control the production 
efficiency of machines, and monitor their health status. 

2. METHODS 

Previously, when smart diagnosis and networking 
were not yet introduced, engineers could not 
immediately grasp the latest developments of the 
production line, often resulting in errors that could not 
be eliminated immediately and affected the production 
capacity. To overcome these problems, this study first 
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established a simulated production line and added 
intelligent pre-diagnosis and Line Bot networking 
technology to establish the connection between the 
machine and the engineer for crisis management. 

Smart pre-diagnosis involves performing spectrum 
analysis and time-domain analysis on the vibration 
signal generated by the operation of the robotic arm in 
a predetermined time interval by a sensor to obtain 
multiple time-domain feature values. PCA was 
performed on domain feature values, and multiple 
analysis data were obtained. For each analysis data, a 
Gaussian model was developed and a Gaussian 
mixture was applied to obtain a Gaussian mixture 
model. It is used to obtain the difference between both 
the models, the Gaussian mixture model and the preset 
model. Finally, the diagnostic result of the tool was 
verified according to the difference value and the 
preset threshold value [17].  

Principal component analysis (PCA) is a technique 
that reduces the dimensionality of a data set and 
increases interpretability while minimizing information 
loss, maximizing the variance of variables by creating 
new uncorrelated variables. Finding such variable 
variance is the principal component. 

 Principal component analysis is the basis for 
multivariate data analysis based on projection 
methods. The most important use of PCA is to 
represent multivariate data tables into smaller sets of 
variables (summary indices) in order to observe trends, 
jumps, clusters, and outliers. This overview can reveal 
the relationship between observations and variables 
and between variables. The goal is to extract important 

information from the data, taking a visual model as an 
example, as shown in Figure 1, to find lines, planes 
and hyperplanes in k-dimensional space to 
approximate the data as much as possible in the least 
squares sense. A line or plane is a least-squares 
approximation of a set of data points such that the 
variance of the coordinates on the line or plane is as 
large as possible. 

Principal component analysis (PCA) is a technique 
that reduces the dimensionality of a data set and 
increases interpretability while minimizing information 
loss, maximizing the variance of variables by creating 
new uncorrelated variables. Finding such variable 
variance is the principal component. 

Principal component analysis is the basis for 
multivariate data analysis based on projection 
methods. The most important use of PCA is to 
represent multivariate data tables into smaller sets of 
variables in order to observe trends, jumps, clusters, 
and outliers. This overview can reveal the relationship 
between observations and variables and between 
variables. The goal is to extract important information 
from the data, taking a visual model as an example, as 
shown in Figure 1, to find lines, planes and 
hyperplanes in k-dimensional space to approximate the 
data as much as possible in the least squares sense. A 
line or plane is a least-squares approximation of a set 
of data points such that the variance of the coordinates 
on the line or plane is as large as possible. 

Principal component analysis mainly performs 
dimensionality reduction through the following four 
steps. 

 

Figure 1: Schematic of the PCA [17]. 



Desktop Smart Production Line and Diagnosis Technology International Journal of Robotics and Automation Technology, 2022, Vol. 9    117 

2.1. Normalized Data 

The variables that make up a dataset often have 
different units and different methods. This can lead to 
confusion in the system, such as generating very large 
numbers during calculations. To make the process 
more efficient, it is a good practice to center the data at 
mean zero and make it unit-free. This can be done by 
subtracting the current mean from the data and dividing 
by the standard deviation. This maintains the 
correlation and ensures that the total variance is equal 
to 1. 

2.2. Covariance Matrix 

Principal component analysis attempts to collect 
most of the information in a data set by identifying the 
principal components that increase the variance of 
observations as much as possible. A covariance matrix 
is a symmetric matrix with rows and columns equal to 
the number of dimensions in the data. By calculating 
the mean between the two data, the offset of the 
eigenvalue or variable is known. 

2.3. Calculate Eigenvectors and Eigenvalues 

Eigenvectors are linearly independent vectors that 
do not change direction when a matrix transformation is 
applied. Eigenvalues are scalars that represent the size 
of the eigenvectors. The eigenvectors of the covariance 
matrix point in the direction of maximum variance. 
Larger eigenvalues account for more variance. In other 
words, the eigenvector with the largest eigenvalue 
corresponds to the first principal component. 

2.4. Perform Dimensionality Reduction 

Eliminating information helps in dimensionality 
reduction. But with each additional principal 
component, the percentage of total variance drops, and 
the dimensionality can be further reduced by 
eliminating the least significant principal components. 
At this stage, it must be decided how many principal 
components are sufficient and how much information 
loss we can tolerate. Finally, the data is projected from 
the original feature space into a reduced space 
composed of principal components. 

Among matrix decompositions, singular value 
decomposition is a fairly well-known method. It has the 
same characteristics as Eigenvalue and Eigenvector. 
The matrix product of the decomposed vectors can be 
restored to the original matrix, and it can decompose 

the singular matrix and the non-singular matrix. The 
solution steps are as follows. 

First, define the matrix as A. A is an m×n matrix. 
After the conversion of singular values, a set of singular 
values and two sets of singular vectors are obtained to 
obtain a diagonal matrix, which can also be used as an 
image. A characteristic value of data. 

         (1) 

After finishing formula (1), we can get: 

          (2) 

where  are the orthonormal vectors of the A 
matrix, but not all matrices are square, so we rewrite 
the equation as 

          (3) 

Expand the A matrix to get 

 

       (4) 

and  the projection 
matrix of  

3. PRODUCTION LINE PLANNING AND DESIGN 

The objective of this study was the development of 
a small-scale simulation production line. The main 
equipment included a 3D printer (A), a robotic arm (B), 
a compound processing machine (C), a single-axis 
moving platform (D), and a pneumatic cylinder (D), as 
shown in Figures 2 and 3. First, the model is processed 
using a 3D printer. After the processing, the workbench 
of the 3D printer sends the model forward. Currently, 
the workbench presses the light shield sensor, which 
starts controlling the machine. The arm is used for 
Automated Optical Inspection image recognition, 
distinguishing between good and defective products. If 
secondary processing is required, the robotic arm 
clamps the model to the next workstation, the 
compound processing machine; otherwise, it is sent 
directly to the mobile device. The finished products are 
separated on the platform, and the pneumatic cylinder 
is used to push the products off the platform and place 
them in the product storage area (F). 
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Figure 2: Virtual desktop smart production line. 

 

Figure 3: Desktop smart production line. 

4. MACHINE NETWORKING SYSTEM 
ARCHITECTURE DIAGRAM OF THE PRODUCTION 
LINE 

The networking system, shown in Figure 4, is 
intended to reduce the production line of unit 
manufacturing to enable the inspection of the factory, 
using 3D printers and composite processing machines 
to simulate on-site processing machines. The visual 
identification function of the robotic arm can be used for 
product appearance inspection to integrate all 
controllers on the machine networking platform and 
cooperate with the intelligent predictive diagnosis 
system. When the machine fails, the information can be 
sent to the user side through the communication 
service software in real time, and the user can also 
take corresponding actions and measures in response 
to the machine’s warning, such as remotely controlling 
the machine to stop its running. 

5. IMAGE VISUAL RECOGNITION 

The robotic arm used in this study was the TM5-900 
from the TM robot series. This robotic arm has two 
main functions: TM-flow software compilation and a 
TM-vision vision system. 

5.1. TMflow Software Compilation 

This software can simplify the compilation time of 
the program; moreover, it has intuitive editing software 

 

Figure 4: Flow chart of the study. 
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and a full graphical flow chart, and can be used during 
operation. The products in this study are mainly divided 
into round, squared, and hexagonal. Because there is a 
certain angle of deviation when the product is artificially 
placed, we used the machine vision system to increase 
the discrimination angle range of the squared and 
hexagonal products, such that the production line staff 
can place them in the discrimination range at any 
angle. This process can also be used for arm gripping. 

5.2. TM-Vision Visual System 

 

Figure 5: TM-vision visual system. 

The second aspect of the TM5-900 robotic arm is 
the vision system, as shown in Figure 5. No additional 
hardware or software is required. This function can be 
applied directly through the vision node of the TM-flow, 
which can detect the outlines and features of the object 
and preview execution results. 

6. INTELLIGENT PREDICTIVE DIAGNOSIS SYSTEM 

This system can monitor the health of a machine in 
real time using a vibration sensor. If the vibration signal 
exceeds expectations, a warning is issued on the 
computer.  

6.1. Sensor Installation 

The mechanical vibration signal can quickly reflect 
the health status of the robotic arm. This pre-diagnosis 
system consists of an accelerometer installed on the 
robotic arm, as shown in Figure 6. The system collects 
the vibration signal of the arm during movement 
through the accelerometer and sends the vibration 
signal back to the pre-diagnosis system to determine 
the damage done to the arm. The sensitivity of the 
accelerometer used in this study is 50 mV/g. 

6.2. Establishment of a Smart Diagnosis Model 

The analysis and diagnosis software was developed 
on the Visual Studio platform, and PCA was used for 
modeling and analysis. Smart manufacturing can be 
performed by instant monitoring of the mean time 
before degradation. The robotic arm can enable pre-
diagnosis, robotic intelligent predictive maintenance, 
and equipment failure analysis of machineries. 

 

Figure 6: Installation of the accelerometer on the robot arm. 
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An accelerometer was used to capture the feature 
data to compare the healthy and abnormal feature 
maps, and to cooperate with the Gaussian Mixture 
Model Module to predict the abnormal frequency, set 
the warning line, and establish a diagnostic model, as 
shown in Figure 7. 

6.3. Smart Diagnosis Results 

The diagnosis performed through the model and the 
diagnosis result of the arm are shown in Figure 8. The 
green line represents the diagnostic result. The blue 
line (area 1) shows the state of the arm operating 
normally, and the diagnosis results are all below the 

 

Figure 7: Building of a diagnostic model. 

 

Figure 8: Diagnosis result. 
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warning line; the red line (area 2) shows the state of 
the arm when it is abnormally actuated, artificially 
tapping the arm to simulate collision. The diagnosis 
result is higher than the warning line.  

6.4. Principal Component Analysis 

In response to the diagnosis results, we used PCA 
to evaluate the health of the robotic arm. From the 
analysis results, as shown in Figure 9, it could be 
observed that when the arm was moving normally, the 
feature point distribution was convergent. In contrast, 
when the arm was subjected to an external force, the 
feature points were scattered owing to the external 
force. Therefore, from the figure, it is possible to clearly 
distinguish between a healthy and an abnormal 
condition, which has a very significant impact on the 
characteristics. 

7. NETWORK PLATFORM 

The networking platform was designed using 
Microsoft Visual Studio, as shown in Figure 10. In 
addition to integrating controller information into the 
system, the platform can facilitate arm internal 
information, program setting and modification, and the 
remote monitoring of processing screens, as shown in 
Figure 11. To enable users to conveniently grasp the 
status of the production line in real time, we employed 
the Line Bot program in the Line communication 
software. When a problem occurs in the arm, an alarm 
message is instantly sent back to the line message of 
the manager, as shown in Figure 12. This function 
allows managers to obtain first-line information without 
continuously monitoring the processing panel, 
providing greater flexibility and convenience for users. 

 

Figure 10: Networking platform. 

 

Figure 11: Arm’s internal information. 

8. RESULTS AND DISCUSSION 

Because large-scale testing will lead to indefinite 
results and financial risks, a small simulated production 
line processing machine that resembles the actual 
production line was built. In this study, the health status 
monitoring method and communication networking 
software were applied to the simulated production line, 
a diagnostic module was established for health 
monitoring, and the PCA method was used to verify it. 

 

Figure 9: Principal component analysis. 
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Finally, the abnormalities in the process were conveyed 
to the user by the communication software. The results 
are as follows: 

 (1) Collect vibration signals and build training 
models 

The robot arm was selected as the vehicle, and the 
vibration signal of the arm during normal movement 
was captured through the accelerometer sensor. A 
training model was developed based on the normal 
signal that was in turn used to develop a diagnosis 
model along with a Gaussian mixture module and set 
up a warning line, and then, this module was applied to 
the intelligent diagnosis software for its health. 

(2) Diagnosis and verification using PCA 

The health status of the arm was monitored using 
diagnostic software. As an event of an abnormality, we 
provided the arm with an external force to simulate the 
state of failure when the arm collides with the machine. 
According to the monitoring results, the monitoring 
value of the arm was lower than the warning line, when 
the arm was in normal action. Once the arm was 
affected by an external force, the monitoring value 
exceeded the warning line. Then, PCA was performed 
for both conditions, and the characteristics were 

compared. From the distribution, the arm was in a state 
of convergence in the normal action; in contrast, when 
the arm was abnormal, it was characterized by a state 
of dispersion, which can be obtained by borrowing. The 
health status of the arm was distinguished by feature 
distribution. 

(3) Communication software networking 

The network platform monitored the internal 
information of the arm and transmitted the error 
information to the user through the Line communication 
software such that the user could act immediately on 
the problem. This greatly reduced the downtime of the 
machine and effectively improved the production 
efficiency. 

9. CONCLUSIONS 

With advancements in technology, the digitization of 
industry has become an inevitability. In this study, 
intelligent pre-diagnosis technology was employed by 
installing accelerometers on a robot arm, analyzing the 
vibration signals collected, and monitoring the machine 
status. A simulated production line was established and 
combined with a networking platform to integrate 
different machine functions, allowing the machine to 
actively report the production status. If there is an 
abnormal alarm on the machine, the user can be 
alerted in real time. Thus, the user can quickly address 
the problem, which reduces the uncertainty that arises 
during processing and the risk of product failure; 
moreover, the user can grasp the processing time and 
predict the failure of the machine, such that the 
machine downtime can be considerably reduced, which 
reduces the processing costs and improves 
productivity. Therefore, enterprises can operate more 
comprehensively, continuously improving the quality of 
products and services, and reducing production costs. 
Reductions in costs and manufacturing time, as well as 
the availability of high-quality, flexible, and efficient 
products and services can also be achieved. In the 
future, the application of 5G communication will 
become increasingly convenient. In the 5G era, 
communication is fast and accurate. Industrial 
networking must keep pace with the development of 
science and technology and make good use of the 
convenience offered to transform production and 
business models. 
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