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Abstract: The objective of mobile robot path planning (MRPP) is to devise the shortest obstacle-free path for 
autonomous mobile robots based on a given terrain. Numerous MRPP methods have been extensively researched. This 
paper presents a novel approach called Opposition-based Learning Equilibrium Optimizer (OEO) for generating smooth 
paths for mobile robots. The fundamental idea behind OEO is to introduce an opposition-based learning mechanism 
while maintaining the overall framework of the basic EO algorithm. This modification alleviates the susceptibility of the 
basic EO algorithm to local optima. The OEO algorithm is employed to provide smooth paths for autonomous mobile 
robots, and the results are compared with several classical metaheuristic algorithms. Comparative analysis across 
different environments demonstrates that the proposed OEO-based path planning method consistently yields the 
shortest and most collision-free paths with superior stability. 
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1. INTRODUCTION 

With the advent of the AI era, the intelligence and 
automation level of Autonomous Mobile Robots 
(AMRs) has witnessed remarkable advancements. 
AMRs find widespread application in cutting-edge fields 
like smart homes, intelligent logistics, and self-driving 
cars [1]. Path planning constitutes a vital component of 
automated mobile robot systems, tasked with 
generating feasible, safe, and smooth routes from 
starting to destination points within known or unknown 
environments. Intelligent path planning serves as an 
indispensable tool across various domains, including 
robot path planning, unmanned combat vehicles 
(UCVs), vehicle routing problems (VRPs), 
transportation system navigation, military command 
systems, cruise missile trajectory planning, unmanned 
aerial vehicle (UAV) trajectory planning, fire escape, 
and automated guided vehicles (AGVs) [2]. Given their 
extensive use, MRPP problems have garnered 
significant attention from researchers, leading to the 
application of numerous optimization algorithms to 
address the challenges. However, as AMR applications 
continue to expand in scale and diversity, existing path 
planning methods face constraints arising from 
complexity and nonlinearity, preventing them from fully 
meeting all requirements. As an intriguing research 
hotspot, several studies have focused on improving its 
effectiveness and efficiency [3]. 
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Traditional MRPP algorithms encompass Best First 
Search Algorithm [4], Dijkstra's Algorithm [5], A* 
Algorithm [6], Jump Point Search Algorithm [7], Breadth 
First Search Algorithm [8], Trace Algorithm [9], Rapidly 
Exploring Random Trees Algorithm [10], Probabilistic 
Roadmap Algorithm [11], among others. Nevertheless, 
Dijkstra's algorithm's inefficiency stems from the need 
to traverse a large number of nodes and its inability to 
handle negative edge problems. Best First Search 
Algorithm bears similarities to the Dijkstra Algorithm but 
employs a heuristic function to expedite target node 
guidance. 

In recent years, a multitude of bio-inspired 
algorithms have found widespread use in solving 
MRPP problems, such as Particle Swarm Optimization 
(PSO) [12], Genetic Algorithm (GA) [13], Ant Colony 
Optimization (ACO) [14], Salp Swarm Algorithm [15] 
and more. Swarm intelligence algorithm combines 
stochastic algorithms with local search and exhibits 
impressive performance in addressing highly nonlinear 
and multimodal optimization problems. Nonetheless, 
swarm intelligence algorithm faces challenges like local 
optimization and slow convergence [16]. GA simulates 
evolutionary principles found in the biological world, 
displaying potent global optimization capabilities. 
However, its need for a substantial population and 
extensive search space may lead to local optimization 
and slow convergence during the search process [17]. 
In PSO, particles' flight process serves as the individual 
search process, with flight speed dynamically adjusted 
based on the individual's historical optimal position and 
the population's historical optimal position. PSO is 
prone to early convergence when tackling complex 
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optimization problems [18]. In the realm of MRPP, ACO 
divides the search space into a grid and leverages 
state transition probabilities and pheromone updating 
methods for resolution [19]. Nevertheless, ACO's 
convergence rate might be slow, necessitating 
substantial computational efforts. Known for their slow 
local convergence, Firefly Algorithm (FA) [20-21], 
Artificial Bee Colony (ABC) [22-23], and Salp Swarm 
Algorithm (SSA) [24], while GWO demonstrates 
deficiencies in population diversity and slow late 
convergence. In the field of MRPP, PSO, ABC, GWO, 
and FA are commonly employed comparison 
algorithms. This paper also conducts a comparative 
analysis of these widely used algorithms in mainstream 
practice. 

EO, originally introduced by Faramarzi in 2019 [25], 
is a physically based metaheuristic algorithm. It boasts 
a straightforward framework, requires minimal 
parameter adjustments, and exhibits superior 
optimization performance. The algorithm has been 
successfully applied in diverse fields like feature 
selection [26], photovoltaic solar parameter extraction 
[27], medical image segmentation [28], and medical 
image fusion [29]. As population intelligence algorithms 
are stochastic optimization techniques, randomness 
significantly influences the search process. Maintaining 
an optimal balance between exploration and 
exploitation is critical for their effectiveness during the 
search. 

Despite EO's excellent performance in function 
optimization and various real-world applications, certain 
limitations persist, including poor local search ability 
and susceptibility to local optima. Moreover, although 
researchers from different fields have favored EO, its 
application to MRPP problems remains unexplored. 

To address these issues, this paper proposes a 
path planning algorithm called Opposition-based 
Learning EO (OEO). By integrating a reverse learning 
mechanism into the basic EO, OEO overcomes the 
tendency to converge to local optima. Furthermore, the 
OEO algorithm is applied to the path planning of AMRs. 
Comparative tests are conducted to evaluate the OEO-
based MRPP method in different environments against 
several classical metaheuristic algorithms. The results 
demonstrate that the proposed MRPP method provides 
shorter obstacle-free paths for AMRs. 

The primary contributions of this study are as 
follows:  

(a) The proposal of an enhanced EO algorithm to 
tackle the limited exploration capabilities of the basic 
EO.  

(b) Application of the improved EO algorithm to offer 
optimal accessibility paths for AMRs. 

(c) Systematic experiments demonstrate that the 
proposed OEO algorithm outperforms its competitors 
for the MRPP problem. 

The structure of this paper is as follows: Section I 
presents the background of the research. Section II 
delves into the relevant literature. Section III provides 
an introduction to the basic EO. Section IV introduces 
the MRPP method based on the enhanced EO. Section 
V compares the proposed method with other algorithms 
to validate its effectiveness in MRPP. The final Section 
presents the conclusion. 

2. RELATED WORK 

MRPP commonly employs traditional algorithms 
such as the A-star algorithm [30], artificial potential field 
approach [31], and neural networks [32]. However, 
these algorithms often struggle with poor convergence 
performance when dealing with complex environments. 
The A-star algorithm's reliance on prior environmental 
knowledge hampers its efficiency in large-scale and 
intricate conditions. Artificial potential field methods 
tend to stagnate and suffer from local optimization 
issues amid obstacles in complex environments. On 
the other hand, neural networks possess real-time 
environmental awareness, rendering them suitable for 
dynamic scenes. Yet, in complex obstacle-laden 
settings, the computational burden of processing large-
scale networks becomes a major challenge. Although 
traditional MRPP algorithms excel in specific 
conditions, they fail to adapt and converge swiftly in 
complex environments, lacking the required 
adaptability. 

To address the MRPP problem, it can be 
transformed into an optimization problem with the 
search for the optimal path represented as an objective 
function. Swarm intelligence algorithms have become 
popular for solving discontinuous, non-smooth, and 
discrete variable problems, thanks to their strong 
stochastic nature, lack of gradient information, and 
absence of a priori knowledge of the optimization 
problem. In recent years, an increasing number of 
population intelligence algorithms have been applied to 
MRPP problems. Researchers continuously enhance 
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and explore algorithms with greater planning efficiency, 
optimization power, and robustness. 

For example, in [33], Wang et al. proposed an 
improved MRPP method based on the modified SSA 
algorithm. Firstly, they enhanced the adaptability of the 
basic SSA by incorporating a dynamic learning 
mechanism. Secondly, an improved orthogonal 
counter-learning strategy was employed to enhance 
the algorithm's capability to escape local optima. The 
developed improved SSA algorithm was applied to 
solve the MRPP problem. The performance of the 
proposed method was tested in several different 
environments and compared with some classical 
metaheuristic algorithms. The experimental results 
demonstrated that the MRPP method based on the 
improved SSA outperformed its competitors in terms of 
path length and obstacle avoidance. 

In [34], another MRPP method based on SSA was 
introduced. They combined orthogonal experimental 
design with quasi-opposition learning to form an 
orthogonal opposition learning mechanism. By 
integrating this mechanism into the basic SSA, the 
algorithm's population diversity was enriched, thus 
improving its ability to escape local optima. The 
designed improved SSA algorithm was applied to 
MRPP and its performance was tested in three terrains 
with different characteristics. The results indicated that 
the SSA-based MRPP method developed in their study 
could generate shorter obstacle-free paths for AMRs 
compared to classical metaheuristic algorithms. 

In [35], a novel MRPP method based on 
metaheuristic algorithms was proposed. Firstly, they 
defined the concept of velocity based on particle 
movement. Secondly, a velocity clamping mechanism 
was designed and introduced into SSA to help particles 
explore the solution space adequately. Additionally, a 
decay factor was incorporated into the basic SSA to 
enhance the algorithm's convergence performance. 
Finally, an adaptive mechanism was embedded in the 
particle's position movement process to help maintain a 
balance between exploration and exploitation. The 
enhanced SSA algorithm introduced in their study was 
applied to MRPP, and the results were compared with 
several classical swarm intelligence algorithms. Based 
on the comparison results in various terrains, the SSA-
based MRPP method developed in their study 
demonstrated better scalability and robustness. 

In [36], an ABC algorithm based on fractional-order 
calculus (FOABC) was introduced to overcome the 

drawback of insufficient convergence accuracy in the 
basic ABC algorithm. To evaluate the performance of 
the FOABC algorithm, it was used to solve the MRPP 
problem. The comparative results with various classical 
MRPP methods demonstrated the remarkable 
performance of FOABC in MRPP problems. 

In [37], a hybrid algorithm based on CS and SCA 
was proposed. This mixed method effectively retained 
the advantages of each respective algorithm and 
compensated for their shortcomings. The proposed 
hybrid algorithm was applied to the MRPP problem, 
and its superior performance was observed in terms of 
path length, turning frequency, collision avoidance, and 
path smoothness. The method proved to be effective 
for multi-robot cooperative systems. 

The aforementioned studies present various MRPP 
methods and their applications, demonstrating their 
potential to address the challenges of path planning for 
AMRs in complex environments. These methods 
showcase improvements in convergence, adaptability, 
and robustness, making them valuable contributions to 
the field of robotics and swarm intelligence-based 
optimization techniques. 

Although swarm intelligence algorithms have been 
widely applied to MRPP problems and have 
demonstrated satisfactory results due to their 
stochastic nature and excellent optimization 
characteristics, no researchers have explored the 
performance of the EO algorithm on MRPP problems 
since its proposal. Since its inception, the EO algorithm 
has proven its effectiveness in various real-world 
problems. Based on empirical evidence, the EO 
algorithm is expected to perform well in the context of 
MRPP problems. In this study, we make the first 
attempt to apply the EO algorithm to MRPP problems. 
To validate its performance, the EO-based MRPP 
method is compared with several state-of-the-art 
metaheuristic methods in various environments. 

The EO algorithm has shown promising results in 
various real-world applications, indicating its potential 
for addressing complex optimization problems. 
Considering its capabilities, we investigate the 
application of the EO algorithm to the MRPP problem 
for the first time. In order to assess its performance, we 
conduct comparative analyses between the EO-based 
MRPP method and several cutting-edge metaheuristic 
approaches in diverse environments. 

This study marks the first exploration of the EO 
algorithm in the context of MRPP problems, and the 
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results obtained from this research can provide 
valuable insights into the algorithm's adaptability and 
efficiency in solving path planning challenges for 
AMRs. The findings may contribute to the 
advancement of swarm intelligence-based optimization 
techniques and their application in the field of robotics. 

3. OVERVIEW OF THE EO 

The standard EO starts its search process by 
randomly initializing a set of particles in the solution 
space. The mathematical model for this phase is as 
follows: 

  Ci
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where randi is an element of a random vector between 
[0,1], Cmax and Cmin are the upper and lower bounds of 
the search space, N is the population size. 

Each particle in the population updates its 
concentration according to the following equation: 
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where Ceq is the concentration of the equilibrium 
candidate, λ is an element of a random vector between 
[0,1]. The equilibrium candidate was randomly selected 
from the equilibrium pool, and the equilibrium pool was 
constructed as described below. 
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In Eq. (3), Ceq(1), Ceq(2), Ceq(3), and Ceq(4) represent 
the four best particles identified thus far, with Ceq(ave) 
denoting their average. The utilization of these top four 
particles contributes to enhanced exploration 
capabilities for the EO process, while the incorporation 
of their average values fosters exploitation. It is worth 
noting that employing fewer than five candidates may 
compromise the performance of this method in the 
context of multi-modal and composite functions; 
however, it may yield improved outcomes for single-
modal functions. Conversely, utilizing more than five 
candidates would yield contrary effects. Each particle 
updates its concentration by selecting an equilibrium 
candidate in the equilibrium pool with equal probability. 

The exponential factor F in EO, responsible for 
adjusting the balance between global exploration and 
local exploitation, is calculated according to the 
following formula. 

  F = e!" ( t!t0 )            (4) 

where t is calculated according to the following 
equation. 
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where Iter and Max_iter denote the current iteration 
number and the maximum iteration number, 
respectively, and a2 is a constant responsible for 
regulating the local search behavior. The parameter t0 
in the exponential term is calculated according to the 
following equation: 
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where a1 is a constant responsible for adjusting global 
exploration, and r is a random vector between 0 and 1. 
Substituting the expression of t0 into Eq. (4), the 
exponential factor can be revised as follows: 
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The EO algorithm defines the concept of generation 
rate (G), which is calculated as follows: 
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where r1 and r2 are random numbers in [0, 1], GP is 
mainly responsible for controlling whether the particles 
use GCP to update the concentration or not. 

4. MRPP BASED ON THE OEO 

4.1. Opposition-Based learning Mechanism 
Enhanced EO 

The opposition-based learning (OBL) technique, 
proposed by Tizhoosh in 2005 [38], is an optimization 
learning strategy that involves seeking the opposite 
solution of a feasible problem solution. It evaluates 
both the original feasible solution and its corresponding 
inverse solution to determine the superior solution, 
which then serves as the optimization learning strategy 
for the next generation of individuals. Within the 
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framework of OBL, two key components are defined - 
the reverse point and OBL optimization. This approach 
explores an effective strategy by identifying the better-
performing solution through evaluating the original and 
inverse solutions, thus guiding the optimization process 
for subsequent generations of individuals. In OBL, 
reverse point and OBL optimization are defined as 
follows: 

Define 1 Suppose x = (x1; x2; ...; xD) is any point in 
D-dimensional space, where x1; x2; ...; xD belong to the 
real numbers R, and xi is in the interval [ai, bi]. Then, 
the corresponding global reverse point of x is defined 
as ox = (ox1; ox2; ...; oxD), where oxi = ai + bi - xi. 

Define 2 Suppose x = (x1; x2; ...; xD) is any point in 
D-dimensional space. The global reverse point of x is 
defined as ox = (ox1; ox2; ...; oxD). For problems 
focused on minimization, if f(ox) < f(x), then x = ox, and 
this is referred to as OBL optimization. 

After updating the particle concentration according 
to Eq. (2), the OBL mechanism is executed, and the 
particle leaps to become an OBL individual. The 
subsequent optimization process retains the superior 

individual between the current particle and the OBL 
individual. Through the application of the OBL 
mechanism, the ability of the basic EO algorithm to 
escape local optima is effectively enhanced. This 
improvement contributes to the overall optimization 
performance of the algorithm. The pseudo-code of the 
OBL algorithm is shown in Algorithm 1. 

4.2. Fitness Function Construction 

The problem of MRPP is often transformed as an 
optimization problem, and the objective is to minimize 
the path length while avoiding obstacles or threatening 
areas. We use artificial intelligence methods to solve 
this optimization problem by mathematically modelling 
the objective and proposing an objective function. The 
meta-heuristic algorithm evaluates the generated 
solution by scrutinizing the objective function to plan a 
suitable path for the AMR. The first mission is to find 
the shortest path, and the second task is to avoid the 
threatening areas. Based on these two goals, the 
objective function is designed as follows: 

  fit = L(1+ ! " Dis)         (11) 
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In Eq. (11), fit symbolizes the objective value, while 
L denotes the path length. Additionally, ρ serves as the 
penalty factor, and Dis is a binary flag variable 
employed to ascertain whether the interpolant point 
resides within regions deemed hazardous. The 
computation of Dis is determined by the application of 
the subsequent equation: 

( ) ( )
( )
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2 2
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where OB represents the count of Threatened areas, 
and (x, y) represents the set of coordinates for the 
interpolant points. The pair (OBXk, OBYk) denotes the 
central coordinates of the kth obstacle, and Disk 
signifies the distance between all interpolant points and 
the kth obstacle. OBRk stands for the radius of the kth 
obstacle, and the mean() function is employed to 
compute the average of an array's elements. It is 
important to note that the initial value of Dis is initialized 
to 0. According to Eq. (12), Dis equals 0 in collision-
free paths, while in paths with collisions, Dis takes on a 
value greater than 0. In summary, as per Eq. (11), the 
objective function promotes the discovery of shorter, 
collision-free paths while discouraging the selection of 
longer, unsafe paths. 

5. SIMULATION WORK 

The OEO-based MRPP approach we propose has 
been implemented using the Matlab 2014b platform. 

We rigorously investigate the performance of our 
proposed methodology and conduct a comprehensive 
comparative analysis against other MRPP methods 
that draw inspiration from nature-inspired swarm 
intelligence techniques, including PSO, GWO, ABC, 
FA, and SSA. The same experimental setup, as 
elucidated in [34], is consistently employed for 
conducting the simulation work. In this regard, we 
utilize three maps of varying dimensions, along with 
multiple predefined threatening areas from a reference 
source [34], to enhance the robustness and credibility 
of our research findings. Comprehensive details 
pertaining to the environmental scenarios are 
meticulously outlined in Table 1. To ensure a fair 
evaluation, control parameter values for our 
competitors are sourced directly from their respective 
original literature, thereby allowing them to attain 
optimal performance levels. 

5.1. Results and Discussion 

As robotics advancements continue, researchers 
have increasingly explored the application of nature-
inspired swarm-based techniques to tackle MRPP 
challenges, yielding commendable outcomes. Within 
the scope of this study, we introduce an MRPP 
framework grounded in OEO principles. Subsequently, 
we evaluate the effectiveness of our proposed 
methodology across three distinct terrains as 
delineated in [34]. Moreover, we subject our approach 
to a rigorous comparative analysis against five well-
established swarm-based techniques. To ensure an 
equitable evaluation, uniform control parameter values 
are meticulously configured. For each terrain, a series 
of six tests, spanning 500 iterations each, are executed 

Table 1: Type of Environment 

Terrain No. of 
obstacles 

Initial 
coordinates 

Final 
coordinates X axis Y axis Obstacle radius 

Map 1 6 0, 0 10, 10 [1.5 8.5 3.2 6.0 1.2 
7.0] [4.5 6.5 2.5 3.5 1.5 8.0] [1.5 0.9 0.4 0.6 0.8 0.6] 

Map 2 
 
 
 
 

30 
 
 
 
 

3, 3 
 
 
 
 

14, 14 
 
 
 
 

[10.1 10.6 11.1 11.6 
12.1 11.2 11.7 12.2 
12.7 13.2 11.4 11.9 
12.4 12.9 13.4 8 8.5 9 
9.5 10 9.3 9.8 10.3 
10.8 11.3 5.9 6.4 6.9 
7.4 7.9] 

[8.8 8.8 8.8 8.8 8.8 
11.7 11.7 11.7 11.7 
11.7 9.3 9.3 9.3 9.3 9.3 
5.3 5.3 5.3 5.3 5.3 6.7 
6.7 6.7 6.7 6.7 8.4 8.4 
8.4 8.4 8.4] 

[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4] 

Map 3 
 
 
 
 

45 
 
 
 
 

0, 0 
 
 
 
 

15, 15 
 
 
 
 

[2 2 2 2 2 2 4 4 4 4 4 
4 4 4 4 6 6 6 8 8 8 8 8 
8 8 8 8 10 10 10 10 
10 10 10 10 10 12 12 
12 12 12 14 14 14 14] 
 

[8 8.5 9 9.5 10 10.5 3 
3.5 4 4.5 5 5.5 6 6.5 7 
11 11.5 12 1 1.5 2 2.5 
3 3.4 4 4.5 5 6 6.5 7 
7.5 8 8.5 9 9.5 10 10 
10.5 11 11.5 12 10 
10.5 11 11.5] 

[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
0.4 0.4 0.4 0.4 0.4] 
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to ascertain the stability and efficacy of the OEO 
approach, with the best-performing outcomes being 

duly recorded. 

Table 2: The Minimum Path Length Comparison of OEO-Based MRPP Approach and Competitors under Three 
Terrains 

Terrain PSO FA ABC GWO SSA OEO 

 Path length Path length Path length Path length Path length Path length 

Map 1 14.3332 14.3200 14.3167 14.3299 14.5421 14.3049 

Map 2 15.7275 15.8280 16.2014 16.0306 16.6224 15.7206 

Map 3 22.1193 21.6858 25.2991 21.8575 22.2995 21.5458 

 

 

Figure 1: Map 1 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) OEO. 
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Table 2 presents the optimal path lengths for three 
distinct terrains generated by all methods, with the 
shortest obstacle-free paths in each environmental 
map highlighted in bold. The table distinctly 
demonstrates that in the first two environmental maps, 
the conventional SSA method consistently chooses the 
longest obstacle-free path from the starting point to the 
target destination, while our proposed approach 
consistently opts for the shortest safe path. Even in the 
case of Terrain 3, our developed method continues to 

prioritize the shortest safe path from the initial point to 
the endpoint, with ABC exhibiting the poorest 
performance in this regard. 

Figure 1 (a-f) illustrates the optimal collision-free 
paths generated by six methods in the first 
environmental setting. It is evident from Figure 3 that all 
six approaches exhibit robust performance, 
successfully identifying collision-free paths. However, 
GWO, PSO, and SSA tend to get trapped in local 

 

Figure 2: Map 2 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) OEO. 
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optima, while ABC, FA, and OEO chart straightforward 
trajectories. Furthermore, in comparison to ABC and 
FA, paths generated by OEO are notably shorter. 

Figure 2 (a-f) showcases the optimal performance 
of all methods in the second terrain with 30 threat 
zones. The plots reveal that both ABC and SSA chart 
identical trajectories, while FA, GWO, PSO and OEO 
generate different types of paths. OEO generates more 
direct paths compared to its competitors. In summary, 
the proposed method performs well in the second 
setting. 

Figure 3 (a-f) compares the optimal collision-free 
routes developed by all methods for the third terrain 
configuration. Experimental results indicate that in this 
terrain, OEO outperforms its counterparts, boasting the 
shortest path length at 21.5458 units, followed by FA, 
GWO, PSO, SSA, and ABC. In conclusion, OEO 
demonstrates superior performance compared to rival 
algorithms. 

6. CONCLUSIONS 

As the complexity of optimization problems 
continues to grow, an increasing number of 

 

Figure 3: Map 3 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) OEO. 
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computational intelligence algorithms have been 
developed to tackle these challenges. These 
algorithms have consistently delivered satisfactory 
results when applied to global optimization problems 
and have garnered a solid reputation. With the proven 
success of evolutionary algorithms in various 
engineering and scientific domains, they have also 
gained significant attention in the field of robotics. 
Specifically, these algorithms find extensive use in 
solving MRPP problems for AMRs. 

In this study, we introduce a novel method called 
OEO, based on the principles of the basic EO. OEO 
incorporates the OBL mechanism, complementing the 
memory storage strategy inherent to basic EO. This 
innovation aids the population in escaping local optima 
and enhances the algorithm's ability to strike a balance 
between exploitation and exploration. We apply the 
developed OEO algorithm to the MRPP problem. To 
assess the performance of the OEO-based MRPP 
method, we conduct rigorous testing in three distinct 
environmental maps. We compare the results against 
those obtained using three classical metaheuristic 
algorithms, including PSO, GWO, ABC, SSA, and FA. 
The outcomes of these experiments reliably 
demonstrate that our proposed method consistently 
charts the shortest collision-free and smoothed path 
from the starting point to the endpoint across different 
environmental maps, outperforming the comparison 
algorithms. This promising performance positions OEO 
as a valuable tool for addressing challenges in path 
planning for AMRs within the domain of mobile 
robotics. In future research endeavors, we plan to 
explore multi-robot path planning within wireless sensor 
networks built upon the foundation of OEO. 
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