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Abtract: Advances in aerospace engineering and aerodynamics have pioneered space exploration and helped support 
telecommunication infrastructure. But these same developments have also aided in the creation of weapons of 
devastating impact. This necessitates the development of ways for detecting and tracking rockets. While several 
methods, mostly based on Doppler radar exist, the need for active radio emissions limits the applicability of these 
systems. A passive system has several advantages over traditional techniques, however their potential is largely 
unexplored. This work seeks to tackle this research gap by exploring the potential of emerging computer vision townies 
applied to rocket detection and tracking. The advantages of such a system are the relatively low cost as well as passive 
nature making observation stations harder to detect and easier to deploy. This work explores the potential of pre-trained, 
lightweight YOLOv8 architectures for rocket detection in real-world situations. A publicly available dataset is utilized and 
a comparative analysis is carried out between nano and small models. Both models demonstrate favorable outcomes 
with an accuracy of 0.90 for rocket body detection and 0.93 for engine flame detection. Nevertheless, rocket detection 
into space is still difficult, with a precision of 0.64 for this class. This paper indicates areas for additional refinement and 
demonstrates the potential of computer vision technology in passive rocket detection.  
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1. INTRODUCTION 

Rocket science, which is the study and application 
of rockets, plays a vital role in modern space 
exploration and satellite deployment. Through rocket 
engineering, mankind has been able to go beyond 
Earth and examine distant celestial planets thereby 
going beyond the boundaries of this planet. For 
instance, launching vehicles with scientific instruments 
to examine the Moon, Mars and further or farthest 
objects in outer space is dependent on it. Besides 
launching satellites that provide better pictures than 
those taken from the surface of Earth, rockets are also 
useful in positioning telescopes and other observational 
instruments into orbit. Apart from space research, 
satellite infrastructure establishment and maintenance 
depend on rocketry. Globally, satellites are used for 
communication systems serving numerous services 
like TV transmission, internet usage support, or global 
positioning systems (GPS). These satellites connect 
people on a global basis reducing distances between 
them thus enhancing international trade as well as 
collaboration. Furthermore, rocket technology 
developments have made rocket launches cheaper 
thereby expanding access to outer space for business 
ventures and facilitating growth of new industries such  
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as asteroid mining and space tourism. Overall rocket 
technology is at the core of our efforts to discover outer 
space and improve intercontinental connectivity. 

International rules precisely control rockets to 
guarantee their responsible and safe usage. These 
rules are meant to stop missile technology from 
expanding, safeguard the environment, and guarantee 
the safety of people living on Earth as well as of space 
missions. Furthermore, the Missile Technology Control 
Regime (MTCR)1 seeks to stop the possible spread of 
missile and unmanned aerial vehicle technologies able 
to deliver a 500 kg payload at least 300km, therefore 
reducing the possibility for missile proliferation. 
Together with these international accords, national 
rules specify strict safety criteria and monitoring for 
rocket launches, therefore guaranteeing that operations 
in space are carried out with the best respect for 
environmental sustainability and international security. 

Although they are essential for satellite deployment 
and space research, rockets are often used for less 
moral goals in military operations where they act as 
weapon delivery platforms. The great risks that rockets 
use in combat call for the creation of sophisticated 
defensive systems meant to offset these hazards. 
Developed to intercept and detonate incoming rockets, 

                                            

1https://www.mtcr.info/en 
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anti-missile defense systems provide a vital layer of 
protection against missile strikes. However, the 
success of these defensive systems mostly depends 
on early, precise detection of rocket launches. Radar 
and satellite-based surveillance are among the 
advanced detection technologies that are most 
important for seeing and following rocket threats in 
real-time, therefore enabling quick and efficient 
countermeasures [1]. This emphasizes the need for 
identification in preventing the use of rocket technology 
and guaranteeing national security. 

Although it is currently mostly unexplored, the use 
of computer vision in rocket detection offers a 
reasonably affordable substitute for costly systems 
depending on radio and radar technology. 
Conventional rocket detection systems depend on 
advanced radar and satellite monitoring equipment [2], 
which may be rather costly and demand major 
maintenance and running expenses. By use of 
cameras and sophisticated image processing 
techniques, computer vision-based systems also 
identify and track rockets. By using already-existing 
aerial or satellite imaging infrastructure, these 
technologies greatly lower the cost and maintenance 
complexity involved in implementation. Moreover, 
developments in machine learning, especially in object 
identification models (like YOLOv8), have improved the 
accuracy and speed of image-based detection 
systems, therefore making them practical for real-time 
uses. This makes computer vision an appealing choice 
for improving rocket detection capacities as it provides 
a scalable and reasonably priced solution that may 
either complement or even replace conventional radar-
based systems. While several methods, mostly based 
on Doppler radar exist, the need for active radio 
emissions limits the applicability of these systems. A 
passive system has several advantages over traditional 
techniques, however their potential is largely 
unexplored. This motivated this work seeking to 
address the observed literature gap. The basic 
research question this work seeks to answer is whether 
YOLOv8 architectures have the capabilities needed for 
rocket detection and tracking from image data. 

The scientific contributions of this work may be 
summarized as the following:  

• Exploring the potential of emerging computer 
vision technologies for passive rocket detection.  

• Investigating the use of the lightweight YOLOv8 
architecture for rocket detection in images.  

• Proposing a passive rocket detection system 
based on lightweight YOLOv8 architectures.  

The remainder of this work follows the outline 
structure: Section 2 discusses preceding works in 
literature and outlines the observed literature gap 
addressed in this work. Section 3 presents a discussion 
of the methodology utilized in this work. The simulation 
setup is presented in Section 4 with outcomes 
presented and discussed in Section 5. The work is 
concluded with Section 6. 

2. RELATED WORKS 

Since Unmanned Aerial Vehicles (UAVs), also 
referred to as drones, started to be accessible for 
public usage, the risk of misuse is greatly increased. 
Many researchers in the literature investigated many 
methods and created hybrid and original systems to 
fight UAVs. In this research [3] the detection and 
localization using radar systems approach are 
addressed. Apart from widely used localization 
techniques for UAVs, this study also reviews the 
methods of hardware and software implementation. 
The increasing number of UAVs raises significant 
questions about how to do efficient and automated 
detection to stop illegal flying. The traditional constant 
false alarm rate-based detectors often experienced 
poor performance on tiny UAV identification owing to 
the weak signal, while they are highly reliant on certain 
human expertise like the ambient noise distribution 
estimate and the size selection of the detection 
windows. Authors in their work [4] investigate a DL-
based UAV detection approach in pulse-Doppler radar. 
They suggest a two-head convolutional neural network 
(CNN) for the regression of offset between the target 
and the patch center and the categorization of the input 
range-Doppler map patch into target present or target 
missing. Whether natural orbital decay is in question or 
deliberate debris removal, precise information on the 
status of the target is very vital during deorbiting. 
Accurate determination of satellite and space debris 
orbits as well as comprehensive radar photographs of 
them is made possible by the Tracking and Imaging 
Radar (TIRA). In their paper [5], scholars analyze the 
state and attitude movements of satellites and space 
junk using 3D modeling of inverse synthetic aperture 
radar (ISAR) pictures collected with TIRA. 

Effective rocket detection using radar and Doppler 
technologies frequently requires high-cost equipment. 
These systems make significant infrastructure 
expenditures, complex signal processing techniques, 
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and powerful radar hardware. Such systems’ creation, 
implementation, and maintenance might be excessively 
costly, therefore restricting their availability and general 
acceptance. The need for modern radar systems to 
generate signals for detection limits one major aspect 
of them. This radiance of radar waves might 
unintentionally expose the position of the radar system 
itself, therefore providing a target for countermeasures 
or strikes. For example, even if active radar systems 
provide real-time tracking and comprehensive 
knowledge about rocket trajectories, their signal 
emissions might be picked by enemies, therefore 
undermining the stealth and security of the monitoring 
system. Radar systems may also suffer from limited 
range, clutter from ambient elements, and trouble 
differentiating between many kinds of flying objects. 
These constraints force constant development and 
integration of artificial intelligence (AI) and machine 
learning (ML) methods to raise detection accuracy and 
lower false alarms. 

Computer vision is the ability of computers to 
identify, evaluate, and comprehend visual data from 
their surroundings, like images and movies among 
other things [6]. Being a completely passive system, it 
only collects and interprets data gathered by sensors or 
cameras without changing the condition of the things it 
studies or directly interacting with them. There are 
several benefits of this passive character. First of all, 
computer vision retains the item’s natural condition and 
function as it has no effect on it. This is vital in 
disciplines such as medical diagnostics and scientific 
research where object integrity is absolutely important. 
Furthermore, computer vision provides real-time 
analysis and constant monitoring, thereby enabling 
applications such as face identification, motion 
detection, and surveillance-free of human involvement, 
hence improving analytical accuracy and speed. At 
last, the ability of computer vision to examine intricate 
visual data may reveal important insights that would be 
hard for people to identify, therefore improving 
decision-making and providing more sensible answers 
in many different fields. 

One of the main technologies driving contemporary 
transportation, autonomous driving, is gradually 
changing the modes of human movement. Vehicle 
detection is a major area of study in this field that 
spans many disciplines, including sensor technology 
and computer vision, interacting here. Authors in the 
paper [7] offer a thorough overview of current vehicle 
detection systems along with their pragmatic uses in 
the domain of autonomous driving. Including those 

based on machine vision, LiDAR, millimeter-wave 
radar, and sensor fusion, more than 200 classical and 
current vehicle detection methods are detailed. Using 
the YOLO-v5 architecture, another work [8] 
demonstrates vehicle identification and classification on 
publicly accessible datasets. The results of this work 
use the transfer learning theory by fine-tweaking the 
weights of the pre-trained YOLO-v5 architecture. Using 
the idea of transfer learning, the writers gathered large 
amounts of photographs and videos of the crowded 
traffic patterns. Using deep learning-based object 
detection is a good way to help visually challenged 
people avoid hazards. In other work [9], seven different 
YOLO object detection models-including YOLO-NAS 
(small, medium, large), YOLOv8, YOLOv7, YOLOv6, 
and YOLOv5 are evaluated with carefully tuned 
hyperparameters to examine how these models 
performed on images including common daily-life 
objects presented on roads and sidewalks. YOLOv8 
turned out to be the best model. In their paper [10], 
authors evaluate the performance of the YOLOv8 
model for drone identification issue. To find the ideal 
architectural size for this challenge, five different model 
sizes were investigated. Several recent applications of 
YOLOv8 models have been explored in recent 
literature as well [11-14]. 

Computer vision has multiple limitations even if it 
has amazing powers. Its huge processing power needs 
to provide one major obstacle. Especially when working 
with high-resolution photos or video streams, analyzing 
and understanding complex visual information often 
requires large processing resources. Furthermore, 
reliable outcomes with computer vision depend mostly 
on image quality and suitable labeling. Practically, 
getting high-resolution pictures and guaranteeing 
accurate labeling may be time-consuming and 
expensive, therefore perhaps restricting the system’s 
efficiency. Selecting appropriate architectures and 
hyperparameters while training computer vision models 
will help to solve these constraints. The performance 
and efficiency of the system may be much improved by 
selecting the appropriate model architecture, such as 
convolutional neural networks (CNNs), and by fine-
tuning hyperparameters such as learning rates and 
batch sizes. More efficient and useful computer vision 
applications result from better balancing of the trade-
offs between processing power, picture quality, and 
labeling accuracy by appropriate model selection and 
optimization. More efficient and useful computer vision 
applications result from better balancing of the trade-
offs between processing power, picture quality, and 
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labeling accuracy by appropriate model selection and 
optimization. 

In recent years several complex challenges have 
been effectively address though the application of AI 
algorithm [15-17]. Challenges associated with human 
readable text such as determining sentiment of 
comments and detecting phishing emails [18-20] are 
amount some of the more popular. Energy forecasting 
is yet another breach of computer science that has 
benefited form the integration of AI [21-23]. 
Additionally, sound analysis is an emerging branch of 
AI research [24-26]. Nevertheless the application of AI 
is not without challenges [27-29]. Algorithms are often 
designed and published with the goal of 
generalizability, with the goal being that many problems 
can be addressed in the defaults state of the algorithm 
[30, 31]. However, when applied to specific problems 
this can somewhat limit performance. Therefore 
hyperparameter tuning is often applied applied [32-34]. 

Using hybrid techniques that mix metaheuristics 
with machine learning models is one efficient way to 
solve the various optimization challenges [35-37]. 
Inspired by natural processes, such as swarm 
optimization or evolutionary algorithms, metaheuristics 
are optimization strategies meant to improve the 
performance and efficiency of machine learning models 
[38-40]. A hybrid method may, for instance, maximize 
the architecture and hyperparameters of a CNN used in 
computer vision applications using evolutionary 
algorithms [41-44]. The use of CNN has also found 
several applications outside of computer vision as well 
[45-47]. 

The use of computer vision for rocket detection 
remains little investigated in the present literature and 
shows a notable research gap. Though computer vision 
technologies have advanced and are used extensively 
in many other industries, there is a dearth of thorough 
research concentrating especially on rocket detection. 
Given the special difficulties presented by their fast-
moving and frequently erratic trajectories, this 
discrepancy emphasizes the necessity of 
comprehensive research on how computer vision may 
be efficiently used to detect and track rockets. This 
paper attempts to close this discrepancy by building a 
baseline for rocket detection using computer vision 
methods. The objective is to provide a strong basis 
from which other researchers and practitioners may 
develop, thereby producing more accurate and 
dependable rocket detection systems. 

3. METHODS 

YOLO architecture-based solutions are fast and 
accurate. Their innovative technique predicts bounding 
boxes with probabilities for each class by just analyzing 
an image once [48]. This model predicts position and 
category using raw images, unlike two-stage detectors 
that make real-time applications practical. Data 
augmentation, transfer learning, and fine-tuning 
improve YOLO generalization. Use cases with great 
variety may be improved using these methods. 

YOLO model object detection uses a single network 
to identify areas, orientations, and sizes without using 
distinct models. The backbone, neck, and head make 
up the single-stage YOLO detector. The backbone 
extracts low-level and high-level characteristics, the 
neck combines them, and the head predicts object 
location and class. The semantic information of 
characteristics increases with this approach. Grids in 
images anticipate item position and bounding boxes. 
This permits object identification with one inference by 
treating the issue as a single regression. Each 
bounding box outputs the object’s potential coordinates 
and probability in five dimensions. The center point, 
width, height, and likelihood that the item is in that box 
are the dimensions. Transfer learning is crucial to 
YOLO architecture. These models are pre-trained in 
different sizes. Additionally, models may categorize, 
track, segment, and identify postures. 

3.1. YOLOv8 

New YOLO models are produced and improved 
fast. New features and approaches to increase 
performance, flexibility, and efficiency have been 
included in its upgraded forms. YOLOv8 supports 
computer vision tasks like object recognition, 
segmentation, posture estimate, tracking, and 
classification, the same as past models. The variety 
and freshness of this approach inspire people to try 
and implement it in other spheres. YOLOv8 boasts 
faster speed and more accuracy than earlier versions. 

Comparing many model sizes allows one to assess 
this using mAP (mean average precision) value and 
inference speed. New models include YOLOv8-seg for 
segmentation tasks, YOLOv8-pose for pose estimation, 
and YOLOv8-cls for classification. YOLO became a 
more flexible tool because of this feature. One 
uniqueness is integrating with Roboflow, ClearML, 
Neural Magic, and Comet systems. Tasks related to 
dataset labeling, training, visualization, and model 
maintenance benefit from these platforms. Furthermore 
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included is Ultralytics HUB, a brand-new tool offering a 
complete solution for data visualization, model training, 
and model implementation. Usually, pre-trained 
datasets are trained using Open Image V7 and COCO 
datasets. Variations exist in mAP levels and inference 
speeds. 

Published in February 2024, the most recent YOLO 
version, the YOLOv9 model, is Rich in fresh ideas like 
the Generalized Efficient Layer Aggregation Network 
(GELAN) and Programmable Gradient Information 
(PGI), the new model Comparatively to the MS COCO 
dataset, the model architecture of YOLOv9 [49] 
achieves a higher mAP than current popular YOLO 
models including YOLOv8, YOLOv7 and YOLOv5. 

4. EXPERIMENTAL SETUP 

The introduced approach is evaluated on publicly 
available real-world data [50]. The utilized dataset 
consists of 28149 images total and constitutes a three-
class problem. Detection of engine flames, labeled as 
class 0 in the dataset, rocket bodies labeled as 1 in the 
dataset, and "space" denoting tiny specks in the sky 
being rockets following Ascension into space. 24435 
images are used to facilitate model training (around 
89%), 2428 for validation (around 9%), and a total of 
1286 images (around 5%) are reserved for model 
evaluation. The dataset comes with predefined data 
separations for each stage. 

Partially pre-trained YOLOv8 model architectures 
are prepared using the data described above. Each 

model is trained using default training parameters with 
15 allocated training epochs. Evaluations are carried 
out using the following metrics:  

Precision = TruePositives
TruePositives+FalsePositives

        (1) 

Recall = TruePositives
TruePositives+FalseNegatives

        (2) 

mAP@50 = 1
n i=1

n

!APi
(50)           (3) 

mAP@95 = 1
n i=1

n

!APi
(95)           (4) 

where n  denotes the number of classes, mAP@50 is 
the average precision for class i  at a threshold of 0.5, 
and mAP@95 where the threshold is 0.95. 

5. SIMULATION OUTCOMES 

The following section describes the simulation 
outcomes. The outcomes of the nano architecture are 
presented first. These are followed by the outcomes 
attained by the small model architecture. 

5.1. YOLOv8 Nano Model Simulations 

Outcome metrics during training for the nano model 
are prided in Table 1. Class loss stagnates around the 
15th training epoch. Further detailed metrics in terms of 
precision, recall, mAP50, and mAP50-95 are provided 

Table 1: YOLOv8 Nano Model Training and Validation Outcomes in each Epoch 

epoch  train/box_loss  train/cls_loss  train/dfl_loss  val/box_loss  val/cls_loss  val/dfl_loss  

1 1.6117  2.09110  1.20960  1.5004  1.27720  1.13890  

2 1.5517  1.23020  1.19210  1.5076  1.14240  1.15230  

3 1.5146  1.11470  1.17920  1.4294  0.99703  1.13890  

4 1.4588  1.03310  1.14590  1.3937  0.91307  1.09170  

5 1.3990  0.94683  1.11930  1.3346  0.83019  1.06060  

6 1.3719  0.86985  1.09950  1.3009  0.81756  1.05110  

7 1.3194  0.80643  1.07730  1.2974  0.77347  1.04030  

8 1.2796  0.76251  1.05860  1.2227  0.71568  1.02110  

9   1.2440    0.71949    1.03700    1.1815    0.68469    1.00440   

10 1.2104  0.68530  1.02370  1.1766  0.66378  1.00540  

11 1.1726  0.64564  1.00580  1.1381  0.63011  0.98908  

12 1.1396  0.61856  0.99151  1.1216  0.61309  0.98202  

13 1.1038  0.58686  0.97970  1.1015  0.58497  0.97739  

14 1.0751  0.56003  0.96786  1.0929  0.57157  0.97192  

15 1.0459  0.53685  0.95294  1.0753  0.55229  0.96608  
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in Table 2. Precision peaks with a score of 0.85771 in 
the 15th iteration. Similarly recall recall a maximum of 
0.79670. A MAP of 0.84294 is attained at a 0.51542 for 
mAP50-95. This is to be somewhat expected as the 
mAP50-95 has a much higher criterion for detection. 

Visual plots of the training and validation metrics, as 
well as detailed metrics, are provided in Table 1. A 
spike in early dfl_loss can be observed. However, this 
is resolved in later iterations. In terms of validation 

outcomes metrics in terms of precision recall and 
mAP50 and 96 show constant convergence during 
training reaching a precision exceeding 85%. 

The PR curve and confusion matrix for the trained 
model are provided in Figure 2. The confusion matrix 
suggests that the model performs well in detecting 
engine flames, attaining a precision of 0.92. Similarly, 
rocket bodies are detected with a precision of 0.90. 
Rockets in space are somewhat challenging for the 

Table 2: YOLOv8 Nano Model Detailed Metrics on Tasting Data in each Epoch 

 epoch  metrics/precision(B)  metrics/recall(B)  metrics/mAP50(B)  metrics/mAP50-95(B)  

1  0.59645   0.58013   0.60189   0.30233  

2  0.58321   0.62473   0.64460   0.32373  

3  0.69036   0.64193   0.68642   0.35526  

4  0.74560   0.65727   0.71019   0.37728  

5  0.70528   0.71309   0.73604   0.40247  

6  0.78083   0.67954   0.73939   0.40853  

7  0.75213   0.71370   0.76065   0.42624  

8  0.79123   0.73057   0.77358   0.44084  

9    0.78184     0.74419     0.78008     0.45429   

10  0.80976   0.76031   0.80347   0.47087  

11  0.83553   0.76214   0.80821   0.47931  

12  0.84536   0.76699   0.82133   0.49132  

13  0.85619   0.77653   0.82980   0.50257  

14  0.84478   0.79327   0.82657   0.50569  

15  0.85771   0.79670   0.84294   0.51542  

 
Figure 1: Nano model training and validation graphs. 
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model attaining a precision of only 0.64. However, 
given the small dimension of the object in these cases, 
this is to somewhat be expected. 

Samples of classifications with associated model 
confidence as opposed to ground truth labels are 
provided in Figure 3. 

 
Figure 2: Nano model PR curve and confusion matrix. 

 

 
Figure 3: Nano model sample detection’s and labels. 
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5.2. YOLOv8 Small Model Simulations 

Outcome metrics during training for the small model 
are prided in Table 3. Class loss stagnates around the 
15th training epoch. Further detailed metrics in terms of 
precision, recall, mAP50, and mAP50-95 are provided 
in Table 4. Precision peaks with a score of 0.84701 in 
the 15th iteration. Similarly recall recall a maximum of 
0.83300. A MAP of 0.86498 is attained at a 0.53888 for 

mAP50-95. An improvement in mAP scores can be 
observed over the outcomes attained by the nano 
model. Based on the attained outcomes further training 
is necessary to refine the small model and there is 
room for additional improvement in model outcomes. 

Visual plots of the training and validation metrics, as 
well as detailed metrics, are provided in Table 4. Due 
to the more complex architecture in comparison to the 

Table 3: YOLOv8 Small Model Training and Validation Outcomes in each Epoch 

epoch  train/box_loss  train/cls_loss  train/dfl_loss  val/box_loss  val/cls_loss  val/dfl_loss  

1 1.5850  1.52820  1.27470  1.5691  1.51110  1.2783  

2 1.5740  1.21440  1.27980  1.5478  1.15560  1.2723  

3 1.5115  1.10950  1.24970  1.3894  0.96817  1.1854  

4 1.4362  0.99644  1.20350  1.3475  0.85687  1.1447  

5 1.3709  0.89933  1.16430  1.3250  0.80254  1.1121  

6 1.3541  0.84220  1.16210  1.2669  0.75856  1.1062  

7 1.3153  0.79147  1.14240  1.2908  0.74083  1.0898  

8 1.2696  0.73841  1.11680  1.2104  0.69283  1.0644  

9   1.2321    0.69871    1.09110    1.1618    0.65665    1.0545   

10 1.1863  0.65938  1.07340  1.1263  0.62189  1.0380  

11 1.1453  0.61158  1.05260  1.1052  0.59081  1.0336  

12 1.1089  0.58096  1.03560  1.0814  0.57040  1.0272  

13 1.0645  0.54645  1.01770  1.0672  0.54952  1.0164  

14 1.0273  0.51621  1.00330  1.0516  0.53014  1.0105  

15 0.9918  0.49134  0.98289  1.0400  0.51728  1.0099  

Table 4: YOLOv8 Small Model Detailed Metrics on Tasting Data in each Epoch 

epoch  metrics/precision(B)  metrics/recall(B)  metrics/mAP50(B)  metrics/mAP50-95(B)  

1 0.64730  0.48528  0.56456  0.28089  

2 0.61515  0.56138  0.60788  0.30583  

3 0.66877  0.66684  0.68195  0.35912  

4 0.75531  0.68252  0.72662  0.39150  

5 0.70574  0.70672  0.72807  0.40226  

6 0.78040  0.73381  0.76945  0.43290  

7 0.79730  0.73149  0.79158  0.44172  

8 0.80060  0.75674  0.79038  0.45408  

9   0.81648    0.76675    0.81106    0.47714   

10 0.79882  0.76764  0.82525  0.49430  

11 0.82246  0.77860  0.82680  0.50274  

12 0.84899  0.79424  0.84732  0.51562  

13 0.85054  0.81349  0.85163  0.52071  

14 0.86119  0.80419  0.85947  0.53295  

15 0.84701  0.83300  0.86498  0.53888  
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small model, training rates are somewhat stable with 
fewer spikes. However, several shifts in terms of 
precision on validation data. The model attains a 
precision score that is slightly below that of the nano 
model. While the complex architecture can address 
more subtle correlations in input data, it requires 
additional training epochs and additional training data 
to demonstrate favorable outcomes. 

The PR curve and confusion matrix for the trained 
model are provided in Figure 5. The model’s precision 
for engine flames is matched between the nano and 
small models at 0.93. The small model performs 
marginally better for rocket body and space detection 
with respective scores of 0.91 and 0.66. While these 
results are somewhat better compared to the nano 

model, the increased computational costs for training 
and operations need to be considered when selecting a 
suitable model. 

6. CONCLUSION 

Advancements in rocketry have pioneered space 
exploration. Advances have helped push forward global 
telecommunications through satellite deployment. 
However, many of the same technologies that support 
these, can also be used as tools of conflict. Therefore, 
many tracking technologies have been developed to 
detect and identify rockets. Techniques such as 
Doppler radar have been in use since the Second 
World War with over-the-horizon radars developed 
since. Nevertheless, radio-based systems are active 

 
Figure 4: Small model training and validation graphs. 

 

 
Figure 5: Small model PR curve and confusion matrix. 



46     International Journal of Robotics and Automation Technology, 2024, Vol. 11 Jovanovic et al. 

transmission systems that give away their location in 
the radio spectrum, making them demanding in terms 
of power and easy to target. A passive computer 
vision-based system is a promising research topic as 
relatively cheap and simple cameras can potentially be 
used to track rockets in line of sight. This work explores 
the potential of emergent computer vision technologies 
for passive rockets and detection. The capabilities of 
lightweight pre-trained YOLOv8 architectures are 
evaluated on real-world data. Models demonstrate 
decent outcomes, with a precision of 0.93 for engine 

flame detection and 0.90 for rocket body detection. 
Rockets that have ascended into space can also be 
deleted as specks in images. This, however, is a 
tougher challenge with the model demonstrating a 
precision of 0.64 for the detection of this class. 

As with any research this work faces certain 
limitations both practical and theoretical. Data 
availability, computational demands of training, and 
parameter optimization limit the extent of comparisons 
that can be conducted in a single study. Practical 

 
Figure 6: Small model sample detection’s and labels. 
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applications of the system are also limited by 
computational resource availability, image quality, and 
other external factors such as weather. Future works 
hope to explore how these factors influence the 
utilization of the porpoised system. Additionally, 
methods for optimizing model parameters improve 
training times as well as overall classification accuracy 
and outcomes. 
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