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Abstract: With the rise of autonomous driving in recent years, path planning has gained widespread attention. 
Traditional path planning needs to be based on a large amount of known information, which is not available for confined 
environments. Taking the complex indoor space where GPS cannot be used as the research background, the article 
designs a self-organised motion scheme for multi-intelligent body trolleys that includes exploration and path planning. By 
improving the DWA and A* algorithms, the multi-robot self-organisation achieves reasonable path planning, and the 
fusion of the two algorithms solves the contradictory problems of global planning being unable to avoid dynamic 
obstacles and local planning possibly falling into local optimum. After that, the pilot-following algorithm is added to guide 
the multi-intelligence body to operate in formation. By studying the constraints of hardware such as LiDAR and machine 
trolleys, the chain distribution of multiple intelligences is proposed to solve the problem of information loss caused by the 
discontinuous monitoring field of view. Eventually, when the carts are all in position, the whole area is covered and 
monitored using sensor fusion with multiple viewpoints. The feasibility of the explored scheme is verified by simulation 
experiments, and the feasibility and robustness of multi-sensor fusion is verified by specific hardware. 
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1. INTRODUCTION 

With the rapid leap of science and technology and 
the booming development of artificial intelligence field, 
information visualisation technology is increasingly 
becoming a bridge connecting data and cognition, and 
its social demand is more and more extensive and 
urgent [1]. In this context, information perception 
system plays a pivotal role as the core hub. Tracing 
back to 1994, the United States took the lead in 
completing the development and application of the 
GPS global positioning system, a milestone 
achievement that led the revolution in positioning 
technology, made precise positioning an indispensable 
part of daily life, and also provided strong support for 
the huge work of path planning. 

In recent years, more and more research on path 
planning has turned to indoor space. Facing the 
complex indoor environment and the layers of steel and 
concrete blocking the signals, it is not possible to 
achieve the accurate path planning task indoors by 
copying the outdoor mode of using GPS. Since the 
beginning of the 21st century to the present after 
unremitting exploration and innovation, indoor path 
planning technology has made significant progress, 
building a relatively mature solution system, but today's 
traditional path planning programme has a difficult to 
avoid the problem is the need for a large amount of 
known information or a high degree of cooperation with 
personnel, once the loss of pre-information collection 
will make it difficult for the intelligent body to move for- 
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ward. For path planning in unknown areas, its potential 
application scenarios are extremely wide, spanning 
military strategic deployment, emergency rescue in 
small spaces, and even wildlife ecological monitoring 
and other key areas, showing its immeasurable value 
[2]. In view of this, the article precisely focuses on this 
demand gap, and innovatively proposes a 
multi-intelligent body self-organised path planning 
algorithm in unknown space. 

The core of the technology framework is built by 
high-precision LiDAR sensors in collaboration with a 
set of self-organised robotic carts. These intelligent 
vehicles are capable of moving in autonomous 
formation, with the front vehicle leading the rear vehicle, 
exploring unknown environments efficiently by using 
the precise scanning capability of LIDAR, and also 
intelligently adjusting the deployment strategy 
according to the complex and changing environmental 
conditions to achieve penetration and scanning of 
unknown areas. On this basis, they can work together 
to accurately track and locate moving targets in the 
area, demonstrating excellent real-time response 
capability and positioning accuracy. The main 
challenges addressed in this paper have two main 
parts: firstly, how to use multiple intelligences to 
explore in an unknown space and maintain the 
avoidance of static as well as dynamic obstacles, and 
finally arrive at the target area or complete the 
exploration; secondly, how to use the linkage of 
multiple robots on the way of exploration to 
continuously monitor the space, and how to realise the 
joint work between multiple intelligences in the 
presence of signal interference. 

In this paper, the efficacy and robustness of the 
proposed system is systematically verified through a 
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well-designed simulation environment, complemented 
by detailed comparative analyses of test and 
experimental data. The experimental results show that 
the technology module of the system exhibits excellent 
obstacle avoidance and path planning capabilities 
when exploring unknown regions. Specifically, the 
module not only achieves a high degree of real-time 
responsiveness to ensure instantaneous 
decision-making, but also significantly optimises the 
generation strategy of obstacle avoidance paths, 
resulting in smoother and more efficient trajectory 
characteristics. This optimisation not only overcomes 
the limitations of traditional path planning in static 
environments, but also effectively solves the local 
optimal dilemma faced by path planning in dynamic 
environments, and realises the comprehensive 
optimisation of static and dynamic obstacles, thus 
comprehensively improving the adaptability and 
practicability of the path planning scheme. In summary, 
this study provides a strong support for improving the 
performance and reliability of path planning. 

1.1. Domestic and International Research Status 

This paragraph introduces the methods and origins 
of path planning and multi-intelligentsia collaboration, 
including the research results in recent years at home 
and abroad, the advantages and disadvantages 
between the methods and the improvement of the 
methods. 

The widespread application of intelligent body 
technologies is profoundly reshaping the landscape of 
various industries, and the concept of collaborative 
multi-intelligent body localisation has continued to 
attract extensive attention and in-depth exploration in 
the research community since it was pioneered by Fox 
and Bekey et al. in 2000 [3]. Compared to single 
intelligences, although they are also capable of sensing 
the environment through path planning and sensor 
technologies, their capabilities are often limited by the 
limitations of a single detection by a camera or a laser. 
The rise of multi-intelligent body systems not only 
greatly enriches the dimension and depth of 
environment sensing, but also builds a more stable and 
reliable localisation network through distributed 
information sharing and strategy collaboration. This 
collaborative mechanism enables multi-intelligent 
bodies to respond quickly, collaborate efficiently, and 
complete tasks quickly and accurately in unknown 
areas. 

For indoor path planning research is mainly divided 
into two parts, dynamic path planning based on local 
and global path planning based on static information. 
The traditional static path planning algorithms are 
Dijkstra, A*, D*, RRT [4], PRM [5], ant colony algorithm 

and so on. Dijkstra's algorithm, proposed in 1959, is a 
shortest path algorithm from one vertex to each of the 
remaining vertices, which solves the shortest path 
problem in the power graph. Later, by fusing the 
advantages of the best-first search algorithm and 
Dijkstra's algorithm, the A* search algorithm was first 
proposed by Peter Hart, Nils Nilsson, and Bertram 
Raphael [6] of Stanford Research Institute in 1968 to 
solve the static global path planning problem.  

Traditional dynamic path planning mainly includes 
DWA, potential field method [7], etc. Fox [8] et al. 
proposed DWA, which samples and combines the 
velocities in the space to compute multiple moving 
routes and selects the optimal trajectory based on the 
robot's motion model as well as the current motion 
state. Rosmann et al. [9] proposed a multi-objective 
optimisation algorithm to ensure the smoothness of the 
robot's motion. 

In the field of path planning, whether dynamic or 
static, a single method is often difficult to cope with the 
challenges of complex and changing scenes, which is 
directly related to the success of path planning. For the 
static global path planning mainly based on A* 
algorithm, which is the result of analysing and 
calculating the global information in advance, it is not 
able to respond in time to unexpected situations, and it 
is difficult to avoid dynamic obstacles, and it is not able 
to replace more suitable paths in the changing scenes. 
As for the local dynamic path planning based on DWA 
algorithm, although it satisfies the timely response to 
the dynamic scene by continuously calculating and 
deciding the next movement route, due to the loss of 
global information and the insufficient length of 
prediction, it will fall into the local optimal solution in the 
face of certain obstacles, resulting in the inability to 
avoid the obstacles and thus failing to arrive at the 
target position. 

To address the above problems, many researchers 
have conducted a lot of studies. For example, Jiajun Xu 
et al [10] proposed a path planning method combining 
the improved A algorithm and the TEB algorithm. By 
introducing a virtual expansion region and optimising 
the inflection point selection strategy, the efficiency of 
the search and the security of the path are improved. In 
addition, the fusion of the TEB algorithm enables the 
method to achieve path planning in dynamic 
environments, but the method is mainly applicable to 
robots with Ackermann structures. Tao Zhang et al. 
[11] improved Algorithm A by extending its search 
neighbourhood to 25 directions and simplifying the 35 
search directions to 9 to improve the operation 
efficiency, but this improvement may lead to ignoring 
the smaller obstacles around. Xu Wei et al. [12], on the 
other hand, combined the simulated annealing 
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algorithm with the A* algorithm to complete the static 
path planning and improved the trajectory evaluation 
function of the DWA algorithm, which ultimately 
achieved the local obstacle avoidance function. In this 
paper, the A* algorithm is improved to change the path 
planning using global information to local global path 
planning using known information, which is applicable 
to the path planning under unknown space mentioned 
in this paper. Moreover, this paper improves and 
optimises the DWA algorithm to find a dynamic path 
planning suitable for the self-organised formation 
movement of multiple intelligences in this paper by 
constructing different evaluation functions, so that each 
intelligent body considers the subsequent monitoring of 
the unknown space while participating in the obstacle 
avoidance, and dynamically combines the improved 
two methods to guide the trolley to avoid the obstacles 
as well as the dynamic global path planning, which is 
able to meet the requirements of avoiding the dynamic 
obstacle and at the same time jumping out of the local 
optimal solution as much as possible. 

2. MODEL DESIGN AND OPTIMISATION 

In this chapter, we detail the design and use of the 
multi-intelligent body self-organised motion and path 
planning model in the paper through several 
subsections, focusing on the pilot-following algorithm, 
the improved and fused DWA and A* path planning 
algorithms. A detailed description of how it can be 
improved and how it can be implemented is given. 

2.1. Multi-Intelligent Body Collaboration and Path 
Planning 

In this subsection it is presented in two main parts, 
one focuses on the design and application of the 
pilot-follow algorithm around multi-intelligence 
self-organising formations, and the other focuses on 
how to improve the A* and DWA algorithms and 
integrate the two to use this model as the main 
algorithm for guided path planning. 

 

Figure 1: Intelligent Trolley Motion Parameters. 

2.1.1. Pilot-Follow Method 

In this paper, the pilot-following method is used to 
realise the formation of multiple intelligences in 
unknown space. For the pilot-following method, the first 
thing involved is the equations of motion of the 
multi-intelligent body, this paper plans to use the 
Mecanum wheel as the motion device of the intelligent 
body, and the motion model of the unmanned vehicle is 
shown in Equation 1 
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          (1) 

where x(t) and y(t) are the horizontal and vertical 
coordinates of the cart at the moment t respectively, 
X(t+Δt) is the displacement of the cart in the X direction 
from the moment t to the moment (t+Δt), Δt is a time 
interval, and similarly Y(t+Δt) is the displacement of the 
cart in the Y direction; 

vx(t) and vy(t) are the velocities of the cart in the 
x-direction (positive direction) and y-direction 
(perpendicular positive direction) of the cart at the 
moment t. vx(t+Δt) is the velocity of the cart in the 
x-direction at the moment (t+Δt), and similarly vy(t+Δt) 
is the velocity in the y-direction; 

ax(t) and ay(t) are the accelerations of the cart in the x 
and y directions; 

θ(t) is the angle between the x-direction of the cart and 
the x-direction of the coordinate system at moment t, 
ω(t) is the angular velocity of the cart's rotation, and α(t) 
is the angular acceleration of the cart. 

In the pilot-following formation exploration strategy, 
the lead vehicle acts as a pilot to lead the direction, 
while the rear vehicle shows a high degree of 
intelligence and adaptability, not simply copying the 
driving trajectory of the vehicle in front mechanically 
(i.e., not pure trajectory following). Rather, it calculates 
a following path to follow the front vehicle according to 
its moving direction, distance, and various types of 
speeds, which not only needs to satisfy the function of 
following the rear vehicle, but also makes use of the 
path planning algorithm to realise obstacle avoidance 
and collision avoidance, which ensures the stability of 
the formation and greatly improves the safety and 
efficiency of the overall exploration task 

Figure 2 is a schematic diagram of the positional 
relationship between the pilot car and the virtual car, 
where the position of the virtual car needs to be set by 
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the pilot car, while Figure 3 is a schematic diagram of 
the positional relationship between the pilot car, the 
virtual car and the following car, where the ultimate 
goal of the following car is to reach the position of the 
virtual car. 

The final position to be reached by the follower is 
the position of the virtual robot RV, and not the position 
of the pilot robot RL 

 

Figure 2: Pilot Vehicle and Virtual Vehicle Position 
Relationship. 

 

Figure 3: Pilot vehicle, virtual vehicle and follower vehicle 
position relationship. 

Since the position of the virtual robot RV needs to 
change with the change of the position of the navigator 
robot RL, which is a relative following position, we need 
to project based on the position of the navigator (xL, yL) 
and the correspondence between the navigator robot 
and the virtual robot. The specific steps are as follows: 

!! = !! + !!" !"#（!!" + !!）
!! = !! + !!" !"#（!!" + !!）

!! = !!

      (2) 

xV, yV are the horizontal and vertical coordinates of the 
virtual robot; xL, yL are the horizontal and vertical 
coordinates of the pilot robot; dLv is the length of the 
line connecting the pilot robot with the centre of the 
virtual robot; dLF is the length of the line connecting the 
pilot robot with the centre of the following robot; φLV is 

the angle between the x-direction of the pilot robot and 
dLV, and φLF is the angle between the x-direction of the 
pilot robot and dLF; θL is the angle between the pilot is 
the angle between the x-direction of the pilot robot and 
the X-direction of the coordinate axis, and θV is the 
angle between the x-direction of the simulated robot 
and the X-direction of the coordinate axis. 

Using the above results we can get the relationship 
between the virtual robot RV and the following robot RF, 
but for the multi-intelligent body movement involves a 
variety of problems such as perception, control, motion, 
environment, etc., so there must be a position and 
angle deviation between the virtual robot RV and the 
following robot RF, that is, the state error: 

!!"# = !! − !!
!!"# = !! − !!
!!"# = !!!!!

        (3) 

xeVF, yeVF, θeVF are the state errors of the virtual robot 
and the following robot, respectively; xV, xF, yV, yF are 
the horizontal and vertical coordinates of the virtual 
robot and the following robot, respectively; θV and θF 
are the observation angles of the virtual robot and the 
following robot, respectively. 

The state errors of the virtual robot and the following 
robot in the global coordinate system are converted to 
a reference coordinate system based on the position of 
the following robot by means of a transfer matrix, 
resulting in a state error expression: 

where ex,ey,eθ are the errors in the x,y direction and the 
angle. 
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          (6) 
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!!"# = !! !"#(!! − !!) − !!!!"# + !!!!" !"#(!!" + !! − !!)

!!"# = !! − !!
          (7) 

The collation yields (5); Substituting equation (2)(3) 
into (5) gives (6) 

For the state error, it should be minimised or 
eliminated by controlling the follower, so the derivation 
of equation (6) is used to obtain the relationship 
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between the state error and the follower's linear and 
angular velocities equation (7) 

ωL,ωF are the angular velocities of the pilot robot and 
the follower robot.  

By substituting the equation of motion in (1), the 

controller is used to make 
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closest to zero is sufficient. Due to the limited space of 
this paper does not design the controller using the 
Liyapunov function can prove convergence. 

2.1.2. Route Planning and Design 

Using the information collected by LiDAR for 
obstacle avoidance, this paper improves the DWA and 
A* algorithms and combines them to jointly guide the 
path planning. 

(1) DWA Dynamic Window Approach 

The core idea of the DWA algorithm is to determine 
a sampling velocity space in the velocity space (v,ω) 
that satisfies the hardware constraints of the mobile 
robot according to the current position state and 
velocity state of the mobile robot, and then predict the 
trajectory of the mobile robot in a certain period of time 
under these velocities, and evaluate the trajectory by 
an evaluation function, and finally select the velocity 
corresponding to the best evaluated trajectory as the 
Finally, the speed corresponding to the best evaluated 
trajectory is selected as the speed of the mobile robot, 
and so on until the mobile robot reaches the target 
point. 

Trajectory scoring function: The trajectory scoring 
function is mainly used to calculate the score situation 
of multiple paths, using the cost score situation to 
select the best and most reasonable path, the ultimate 
goal of this paper is to hope to achieve the 
multi-intelligent body unknown space path planning 
and reasonable distribution of intelligent bodies, for the 
obstacle avoidance ability, anti-collision effect and 
obstacle avoidance of the smoothing degree of the 
requirements of the higher, the following is the 
evaluation function of this paper's improved DWA 
algorithm. 

Eq. 8 where α, β, γ, δ are the weighting coefficients, 
and ggoal, gvelocity, gobstacle, and gdirection are the target score, 
smoothing score, obstacle score, and direction score, 
respectively. 

1. The target score in Eq. 9 represents the distance 
between the robot's current state position and the 
target position, the system goal is to minimise this 
distance, the smaller the distance the higher the score, 
which is used to guide the robot towards the target 
position. 

! = ! ⋅ !!"#$ + ! ⋅ !!"#$%&'( + ! ⋅ !!"#$%&'( + ! ⋅ !!"#$%&"'(
         (8) 

!goal(v,ω)=α ⋅ dist(!(v,ω),goal)     (9) 

! ! + !" = ! ! + ! ⋅ !"# ! ! ⋅ !"
! ! + !" = ! ! + ! ⋅ !"# ! ! ⋅ !"

! ! + !" = ! ! + ! ⋅ !"
     (10) 

!"#$ ! !,! ,!"#$ =
(!(! + !") − !!"#$)! + (!(! + !") − !!"#$)!  (11) 

!velocity(v,ω)=β ⋅ (!!!+Δω
!)    (12) 

!obstacle v,ω =γ ⋅    !
min_dist ! v,ω ,obstacles !!

    (13) 

dist(p(v,ω ),goal) is the distance between the robot's 
predicted position trolley and the goal position goal at 
velocity v and angular velocity ω, which is calculated as 
shown in Equation 10: 

Using Eq. 11 Euclidean distance calculation, the 
distance between the existing position of the trolley and 
the target position is obtained xgoal,ygoal are the 
horizontal and vertical coordinates of the target 
position. 

2. The smoothing score of Eq. 12 indicates the 
smoothness of the speed and angle changes during 
the movement of the intelligent body, and the system 
objective is to minimise the rate of change of speed 
and angle, and the smoother the change, the better, on 
the premise of being able to achieve the function. 

It's the rate of change of velocity. 

is the rate of change of angular velocity. 

3. The obstacle score in Eq. 13 represents the 
distance score between the intelligent body and the 
obstacle, and the goal is to be able to keep the 
intelligent body and the obstacle within a certain 
distance interval as far as possible under the minimum 
requirement of obstacle avoidance, so that it will not be 
too far away from the obstacle, resulting in a reduction 
in the efficiency of obstacle avoidance, nor will it be 
close to the obstacle, resulting in the restricted field of 
view of the LiDAR exploration. 

min_dist(p( v,ω ),obstacles) is the minimum distance 
between the robot's predicted position and the nearest 
obstacle at velocity v and angular velocity ω; ε is a very 
small value used to avoid a zero denominator. 

4. In the above formula (13) we can use a simple 
Euclidean distance calculation to make the cart as far 
away from the obstacle as possible to achieve the 
obstacle avoidance function, but in this paper to 

vΔ

ωΔ 
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achieve the function is not simply as far away from the 
obstacle as possible, the function achieved by the 
project in this paper also involves the distribution of 
multiple intelligences and the spatial monitoring, in 
order to achieve the best monitoring effect, it is not only 
need to be as far away from the obstacle as possible, 
need to take into account the close to the obstacle 
monitoring perspective will be narrowed too far away 
from the obstacle will be insufficient to the obstacle 
wrapping and other issues. In order to achieve the best 
monitoring effect, it is not only necessary for the robotic 
vehicle to be as far away from the obstacle as possible, 
but also need to take into account that the monitoring 
perspective will be narrowed when it is close to the 
obstacle, and it will be insufficiently wrapped around 
the obstacle when it is too far away from it. Therefore, 
this paper uses a new obstacle score formula, which is 
able to calculate the score by the distance from the 
obstacle in different intervals, and the score changes in 
different intervals are not the same. 

!!"#$%&'(# = !!(
!"#_!!"#!!

! )
!
    (14) 

The above formula is used to calculate the minimum 
distance min_dist from each point on the trajectory to 
the nearest obstacle, and then the exponential decay 
function is used to calculate the score, which 
decreases very quickly when min_dist is very small, 
and slower when min_dist increases. 

µ is the proper distance desired to be maintained and is 
related to the number of dropping robots and the 
spatial complexity. 

λ controls the rate of decay. A larger value of λ will 
make the score stay higher over a larger distance 
range, and adjusted according to the requirements for 
distance sensitivity, the larger λ is, the slower the score 
declines and the wider the scope of application; the 
smaller λ is, the faster the score declines and the 
narrower the scope of application. The use of this 
formula can make the robot trolley in a certain distance 
range, to achieve the obstacle avoidance function. 

! v,ω = δ ⋅ (− !ngle_diff(θ goal, !new) )   (15) 

!!"#$ = !"#$!%( !!"#$ − !, !!"#$ − !) 

!!"# = ! + ! ⋅ !"
 

5. the direction score of formula 15 indicates the 
angle between the direction after avoiding obstacles 
and the direction of the target, the goal is to minimise 
this angle, the smaller the angle the higher the score, 
indicating that after avoiding obstacles can continue to 
move forward in the original direction. This ensures that 
the exploration process is efficient and does not cause 

repeated exploration by adjusting the direction multiple 
times in an unknown area. 

θgoal is the angle between the current direction of the 
robot and the direction towards the target position. θnew 
is the angle between the robot's new direction at 
velocity v and angular velocity ω and the direction 
towards the target position. angle_diff(θgoal,θnew) is the 
angle difference between θgoal and θnew. 

Dynamic Window Constraints: In DWA, a dynamic 
window defines a set of available velocity commands 
that are defined by the following constraints. 

Velocity constraints: The velocity range of the robot 
at the current moment is determined by the maximum 
velocity of the robot and the acceleration and 
deceleration constraints. 

!min   ≤ ! ≤ !max  

!min ≤ ! ≤ !max     (16) 

Vmin, Vmax is the minimum and maximum speed that can 
be achieved by the mechanical motion of the trolley, 
ωmin,ωmax is the minimum and maximum angular velocity 
that can be achieved by the mechanical motion of the 
trolley, all are related to the specific model of the trolley 
and so on. 

Dynamic constraints (17): in a small period of time 
after the current moment t (dynamic window), the 
velocity change is limited by the acceleration. 

!current-v! ⋅ !" ≤ ! ≤ !current + !! ⋅ !"  

!current − !! ⋅ !" ≤ ! ≤ !current + !! ⋅ !"   (17) 

! ≤ 2 ⋅ !"#$(!,!) ⋅ !! ∧ ! ≤ 2 ⋅ !"#$(!,!) ⋅ !!  (18) 

(!∗,!∗) = !"#(!,!) ∈ DW
!"#

!(!,!)   (19) 

In Eq. 17, V current, ω current are the velocity and 
angular velocity of the cart at the current moment, and 
!!  and !!  are the deceleration and deceleration 
angular velocity of the cart, and the purpose of this 
constraint is to ensure that the acceleration and 
deceleration ranges of the cart should be able to 
conform to the actual situation, and should not only 
satisfy the algorithmic requirements of the simulation. 

Obstacle constraints (18): in the range of 
mechanical power of the machine trolley, the chosen 
trajectory can not collide with any obstacle, in a certain 
distance at a certain time to be able to stop or go 
around. 

(dist(v,ω) in (18) is the distance from the obstacle 
calculated in the dynamic window. 



56  International Journal of Robotics and Automation Technology, 2024, Vol. 11 Ding and Wang 

Use (19) to select the optimal speed: 

(v*,ω*) is the selected optimal speed command which 
is also the highest scoring speed command. arg max 
denotes finding the velocity command that maximises 
the objective function G(v,ω) (v,ω) is the set of velocity 
commands within the dynamic window. 

The DW is a search space of velocity commands 
defined taking into account the current state of the 
robot and its kinematic capabilities (e.g., maximum 
acceleration and maximum velocity). 

G(v,ω) is the evaluation function that assesses the 
merit of velocity commands based on several factors. 

(2) Exploratory A* global planning algorithm 
combined with DWA dynamic window method 

The combination of the A* algorithm and the DWA 
dynamic window method for autonomous navigation 
and obstacle avoidance in complex and unknown 
environments can significantly improve the path 
planning capability and real-time obstacle avoidance 
performance of mobile robots. The core idea of this 
combination strategy is to use the global planning 
advantage of the A* algorithm to solve the problem of 
the DWA algorithm falling into the local optimum due to 
the insufficient prediction length or short step size in 
the obstacle avoidance process, and to use the local 
dynamic adaptation of the DWA algorithm to solve the 
problem of collision with the moving target or the target 
that suddenly enters the robot due to the failure to 
consider the dynamic changes in the planning of global 
routes by the A* algorithm. The DWA algorithm is able 
to solve the problem of collision with moving targets or 
sudden intruders caused by the inability of the A* 
algorithm to take dynamic changes into account in the 
global route planning. 

However, for this project, given that traditional A* 
algorithms rely on complete environmental map 
information, this project innovatively introduces an 
exploratory A* algorithm. The algorithm works in an 
unknown environment, acquires local information about 
the surrounding environment in real time through 
sensors such as LiDAR, and dynamically sets 
temporary target points within its scanning range. With 
the continuous exploration and advancement of the 
mobile robot, these temporary target points are 
constantly updated, guiding the robot to gradually 
approach the global target, while achieving effective 
exploration and monitoring of the unknown space. 

This strategy not only overcomes the limitation that 
traditional A* algorithms cannot be directly applied in 
unknown environments, but also improves the robot's 
ability to explore autonomously in unknown 
environments. 

1. Select a local target location Plocal within the 
scanning range, and use the A* algorithm to plan the 
path from the current location Pcurrent to the target 
location Plocal. 

!(!) = !(!) + ℎ(!)     (20) 

f(n) is the total cost of node n. g(n) is the actual cost 
from the starting point Pcurrent to node n. h(n) is the 
heuristically estimated cost from node n to the local 
goal location Plocal. 

When the trolley reaches the local target position or 
when the target position is found to be unreachable 
during the process, the target position is updated using 
the traditional Euclidean distance as a heuristic 
function, but there is no need to perform calculations to 
obtain it during data collection using LiDAR, and the 
measured distance can be used directly. 

!!"#$! = !"# !"#
!∈!"#$(!!"##$%&,!)

! − !!"##$%&   (21) 

scan(Pcurrent,R) denotes the set of reachable points 
within the scanning range centred on the current 
position Pcurrent with radius R. Using the above formula 
to update a new target position, this process is 
repeated to achieve the purpose of exploring the 
unknown space 

2. Selection of local target points 

! ∗= !"#"$!!"#$!!"#$ ∙ (!!"#$! , !"##$%&_!"#$%$"&)  (22) 

Plocal is the local goal position found in the A* algorithm, 
and p* is the local goal position found in the path of the 
A* algorithm in the DWA algorithm, both of which 
belong to the state of being dynamically updated all the 
time. 

Figure 4 shows the multiple obstacle avoidance 
paths constructed by the robotic vehicle using DWA in 
the face of an obstacle. 

 

Figure 4: Schematic diagram of path selection. 
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2.2. Distributed Design 

This section describes how multi-intelligentsia can 
adopt a distribution strategy by judging the 
environment when implementing exploratory path 
planning in an unknown space, and achieve continuous 
monitoring of the unknown environment space through 
the chained distribution designed in this paper. 

Given the inherent randomness and complexity of 
unknown space exploration, especially for those closed 
environments that are difficult to reach or unsuitable for 
human exploration, traditional vehicle formations 
relying on a single signal transmission mode face a 
high risk of communication interruption and localisation 
loss. In order to effectively address this challenge, this 
project innovatively conceives a chained cooperative 
exploration architecture, which deeply integrates the 
advantages of physical connectivity and wireless 
communication technologies to ensure stable and 
reliable exploration and localisation capabilities even 
under extreme conditions. 

Specifically, we design a chained exploration 
system consisting of multiple LiDAR-guided carts. 
These trolleys are connected to each other by means 
of physical-visual links, forming an invisible, flexible, 
and resilient exploration chain. This design ensures 
that each new vehicle is precisely placed within the 
direct monitoring range of its predecessor, which not 
only greatly reduces the risk of communication The 
(23),(24) constraints ensure that the former robot can 
be within the field of view of the latter robot, and when 
the former robot is about to leave the field of view of the 
latter robot, the former robot that is exploring and 
following will stop where it is and start monitoring the 
area. Interruption due to signal degradation or 
interference, but also enables real-time and precise 
tracking of each vehicle's position, thus avoiding any 
single node from being ‘lost’ in the exploration process. 

In addition, the layout strategy of the chain structure 
gives the system seamless coverage for global 
monitoring. Through continuous and uninterrupted 
line-of-sight connections, the entire exploration chain 
can maintain all-round, dead-angle-free monitoring and 
positioning of the surrounding environment, which is 
crucial for precise navigation and path planning in 
complex and unknown spaces. This architecture not 
only improves the efficiency and safety of exploration 
missions, but also provides a high-quality, high-density 
spatial information base for subsequent data analysis 
and spatial modelling. 

This function is mainly implemented as a judgement 
and constraint approach, whereby uninterrupted 
judgement is used to find situations that meet the 
constraints and execute the command. 

1. Vision constraints 

Constraints (23),(24) in which θL_F is the relative 
angle between the front robot and the back robot, θview 
is the angle of the field of view, and i is the robot 
number, starting from the last robot with 0, and so on. 

The (23),(24) constraints ensure that the former 
robot can be within the field of view of the latter robot, 
and when the former robot is about to leave the field of 
view of the latter robot, the former robot that is 
exploring and following will stop where it is and start 
monitoring the area. 

2. Following distance range 

The drobot in (25) is the furthest distance that the 
machine trolley can detect, and the above equation 
ensures that the robot has to stay within the monitoring 
range without obstacles blocking its view, and once it is 
out of range, the previous machine trolley stops and 
starts monitoring the area. 

!!_! < !!"#$      (23) 

!!! = !"#$!%( !!!! − !! , !!!! − !!) − !!   (24) 

(!!!! − !!)
! + (!!!! − !!)! < !!"#"$ i∈[0,n]  (25) 

3. Distribution strategy 

In this project, we design and implement a highly 
collaborative robotic convoy system that explores deep 
into unknown space in the form of a serialised queue. 
The convoy is arranged in a strict one-line serpentine 
formation, led by a pilot vehicle, and enters the target 
area sequentially, ensuring order and safety during the 
travelling process. 

When the robot car at the end of the queue reaches 
the preset conditions or makes a decision based on 
real-time data analysis, it automatically or manually 
triggers a stop command, and then switches to the 
monitoring mode. The execution of this key action 
marks the full launch of the circular judgement and 
constraint mechanism within the fleet. The mechanism 
aims to dynamically adjust the behavioural strategy of 
each trolley based on its specific position, environment 
sensing data and the exploration progress of the lead 
trolley. 

Specifically, as the tail vehicle stops and switches to 
the monitoring state, each vehicle in front of it responds 
in turn, entering a round-robin judgement process 
driven by a predefined algorithm or on-the-fly decision 
logic. Once a vehicle meets a specific stopping 
condition, it stops travelling and switches to the 
monitoring state, continuing to provide the necessary 
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environmental information to support the overall 
exploration task. 

This process is carried out recursively until every 
robot car in the fleet stops moving according to the 
established strategy and transforms into a monitoring 
unit, or the pilot car successfully completes the 
exploration of the whole unknown space. This design 
not only embodies a high level of automation and 
intelligence, but also significantly enhances the fleet's 
adaptability and flexibility in the face of complex 
environments, providing valuable practical experience 
and technical support for future large-scale, 
high-efficiency robotic exploration missions. 

3. EXPERIMENTS AND SIMULATIONS 

The content of this chapter is mainly to show the 
performance of all the models and algorithms 
mentioned above in the experiments, and at the same 
time the optimised and improved algorithms are 
compared with the original traditional algorithms, so as 
to better reflect the advantages and rationality of the 
new algorithms. 

 
Figure 5: Method Overview Diagram. 

3.1. Simulation Effect 

3.1.1. Extended A* Algorithm 

This paper extends the traditional A* algorithm and 
conducts a comparison experiment with the traditional 
algorithm with 25% obstacle coverage in the same 
300*300 raster map. In this experiment, the traditional 
A* algorithm and the exploratory A* algorithm extended 
in this paper set the same starting point and end point, 
and give the same obstacles to compare the 
processing effect of the two algorithms. This paper also 
compares the exploratory A* algorithm with known 
endpoints and the A* algorithm with completely 
unknown endpoints. Figure 6 shows the results of the 
traditional A* algorithm, which clearly shows that the 
traditional A* algorithm can reasonably plan a shortest 
path through all kinds of known information. Figure 7 
shows that under the condition of unknown endpoint 
information and obstacle information, the endpoint 
position is finally reached through exploratory path 
planning, and the insufficiency of information will lead 
to different paths to reach the target position each time. 
It can be seen that although there is a large amount of 
unknown information interference, the extended A* 
algorithm in this paper has already avoided the 
repeated exploration of paths as much as possible, 
reducing the waste of resources and lowering the 
efficiency. 

 

Figure 6: Traditional A* algorithm. 

Figure 7 shows the path planning using the 
exploratory A* algorithm after the approximate direction 
of the end position is known. The simulation diagram is 
shown below: 

The results of the specific analyses are presented 
below: 

The traditional A* algorithm in Figure 6 requires the 
use of all the obstacle information, including the start 
and end positions, which is a one-time path planning 
and a single applicable scenario. In the expanded 
exploratory path planning in Figure 7, due to the lack of 
information will make the beginning is not necessarily 
towards the end position to explore, but the subsequent 
due to the angle, the continuous improvement of the 
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information, will continue to advance towards the end 
position to finally reach the goal position. Through the 

performance calculation comparison of traditional A* 
algorithm in reference [13] and the data in Table 1, it 
can be seen that the response time of the expanded A* 
algorithm in this paper through the exploration in the 
case of unknown all the information is only increased 
by about 0.2 seconds per 100 metres on average, 
while the expanded algorithm in this paper realizes the 
A* exploration in the case of unknown information, so 
the increase in the response time belongs to the 
acceptable range. 

3.1.2. Improved DWA algorithm and integration of 
exploratory A* 

In this paper, the traditional DWA algorithm is 
improved and jointly guides the path planning by 
combining with the exploratory A* algorithm mentioned 
above, and the feasibility and reasonableness of the 
algorithm is verified by establishing the overall 
multi-intelligent body obstacle environment to simulate 
the above algorithm. The dynamic obstacle avoidance 
effect, path planning and the self-organised distribution 

 

Figure 7: Exploratory A* Algorithm for Unknown Endpoint 
Information. 

Table 1: Performance Parameters of Several A* Algorithms 

Explore Segments 1 2 3 4 5 6 Total Duration 

Search time(s)        

Legacy A*[14] 0.0882 0.0798 0.0774 0.0832 0.0798 0.0865 0.4949 

Improvement A*(1) 0.0466 0.3895 0.0889 0.0200 0.0923 0.0139 0.6512 

Improvement A*(2) 0.0439 0.0162 0.0529 0.4716 0.0601 0.0090 0.6537 

 

 

Figure 8: Dynamic Obstacle Avoidance and Distribution by Fusing Improved DWA Algorithm with A* Algorithm. 

 

 

Figure 9: A* algorithm for obstacle avoidance and distribution. 
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of the subsequent intelligences of the 
multi-intelligentsia are demonstrated in Figure 8. 

In this paper, the same 150*150 raster map with 
45% of obstacles layout is established, Figure 8 is the 
dynamic path planning which integrates the improved 
A* algorithm and DWA algorithm, and Figure 9 
compares with the static path planning using only A* 
algorithm and smoothing in the literature [14], it can be 
clearly seen through the above picture that the 
multi-intelligence body in Figure 8 is under the 
leadership of the head vehicle in the left channel to 
avoid the dynamic obstacles, while in Figure 9 the head 
vehicle in channel one directly passes through the 
dynamic obstacles, and changes the path through the 
right channel to finally reach the target location, 
according to the comparison of the A* algorithm in the 
literature [14]. Dynamic obstacles, change the path 
through the right channel to finally reach the target 
location, while in Figure 9, the head vehicle in the 

channel one directly through the dynamic obstacles, 
according to the comparison of the A* algorithm in the 
literature [14] straight through the dynamic obstacles, 
proving once again that the use of A* algorithms can 
not be made dynamic response, reflecting the 
importance and necessity of fusion algorithms. And 
compared with the traditional DWA algorithm in the 
literature [14] due to the traditional DWA algorithm 
does not take into account the problem of smoothness, 
so it leads to a high cost of smoothness, after 
comparing this paper's improved DWA algorithm in the 
smoothness index to improve about 50%, so that 
multi-intelligence can better bypass the obstacles, as 
shown in Figure 10, the lower part of the Smoothness 
Cost is the cost of smoothness (A) for the improved 
DWA algorithm in this paper and (B) is the smoothness 
cost of traditional DWA algorithm in literature [14]. 

At the same time for the multi-intelligent body 
distribution problem mentioned in this paper, through 

 

         (A)          (B) 

Figure 10: Smoothness cost. 

 

Figure 11: Results of repeated experiments in different directions. 
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different constraints make the multi-intelligent body 
between the chain distribution, as shown in Figure 8 
grey dotted line connected, not only to achieve the 
physical sense of the visual connection has been to 
solve some complex environment signal interruption, 
but also through wireless communication to achieve 
large-scale data transmission, through a large number 
of different angles of the different starting point end 
point can also be a reasonable Distribution results 
Figure 11. 

CONCLUSION 

In this paper, for complex indoor environments 
where GPS cannot be utilised, a multi-intelligent body 
based self-organised path planning and exploration 
scheme is designed, focusing on improving the A* and 
DWA algorithms and fusing the two to address the 
shortcomings of global and local planning. With this 
scheme, the limitations of traditional path planning 
methods in unknown environments are successfully 
addressed, and autonomous formation movement and 
area coverage monitoring of multiple intelligences are 
achieved. 

After the fusion of the improved A* algorithm and 
DWA algorithm not only makes up for the functional 
defects of static path planning on the inability to avoid 
dynamic obstacles, but also improves the planning 
ability of dynamic obstacles on long paths, through 
simulation experiments and comparisons, fully proved 
the feasibility of the algorithm and advantages. 
Compared with the traditional A* algorithm, it not only 
achieves a large reduction of information demand in 
function, but also expands the application scenarios to 
satisfy most of the path planning in the case of lack of 
information, and at the same time ensures that the 
growth of the response time is not more than 30% to 
keep it in an acceptable and reasonable range, and 
also avoids the duplication of the exploration and 
redundancy of the paths through the constraints of the 
path exploratory lengths. 

For the traditional DWA algorithm, the length of the 
planned path is short, and for the path planning of the 
whole director's path, there is always the dilemma of 
falling into the global optimal solution, thus failing to 
find a reasonable path, and the traditional DWA 
algorithm, due to its simple evaluation index, can only 
control the robot to complete the simplest obstacle 
avoidance and converge to the target position, and it 
does not take into account the degree of smoothness 
of the route, and the need to reserve space to prevent 
temporary dynamic obstacles from appearing in the 
visual dead zone when avoiding obstacles. space to 
prevent temporary dynamic obstacles from appearing 
in the visual dead zone. The improved DWA algorithm 

in this paper not only constructs a new set of cost 
evaluation indexes, but also adjusts the motion and 
obstacle avoidance of multi-intelligent body trolley 
clusters through the constraint system, so that the 
intelligent bodies can take into account the overall 
monitoring effect in the smoother obstacle avoidance 
and path planning process without causing too large 
monitoring dead space or missing obstacles, and the 
smoothing cost score increases by 0.5 percentage 
points in comparison with that of the traditional DWA 
algorithm. comparison, the smoothing cost score rises 
by about 50%. 
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