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Abstract: This article presents a novel approach to enhancing human-robot collaboration and safety through advanced 
dynamic modelling and adaptive identification techniques. We introduce a comprehensive methodology that integrates 
motion trajectory design with real-time torque detection, addressing the critical limitations of conventional systems that 
rely on costly joint torque sensors. By simultaneously identifying friction forces in an integrated joint and a simplified 
two-bar mechanism, our approach leverages existing kinematic and dynamic models to achieve precise dynamic 
parameter identification. The proposed method significantly advances the fields of drag-teaching and collision detection 
by eliminating the need for force sensors, thus making it more feasible for mass-produced robotic systems. Our findings 
demonstrate that accurate dynamic modelling is essential for effective zero-force control, particularly in high-speed 
drag-teaching scenarios, where inertia and friction present substantial challenges. Experimental validation confirms the 
efficacy of our dynamic feed-forward controller design and the adaptability of drag-teaching parameters, leading to 
improved operational flexibility and safety in collaborative environments. This research contributes a critical framework 
for future developments in intelligent robotic systems, providing a robust basis for integrating advanced human-robot 
interactions in industrial applications. 
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1. INTRODUCTION 

With the implementation and promotion of 'smart 
manufacturing' across various industries, collaborative 
robots play an essential role in realizing this production 
process. Among these, human-machine integration is a 
crucial development direction for intelligent robots. 
Compared to traditional robots, human-machine 
collaborative robots offer advantages such as flexible 
operation, strong environmental adaptability, and the 
ability to facilitate natural human-machine interaction. 
Figure 1 illustrates a lightweight collaborative robot 
equipped with six integrated joints capable of achieving 
translation and rotation across six degrees of freedom 
at its end effector. Additionally, various tools can be 
attached to the robot's end effector to accommodate 
different working conditions. 

For collaborative robots, human-robot collaboration 
is essential for the in-depth application of intelligent 
robots; thus, improving collaboration and safety is a 
critical issue for practical implementation. This 
encompasses two key functions of intelligent robots: 
drag teaching and collision detection [1]. Drag teaching 
allows the robot to be freely dragged and to reproduce 
the drag trajectory by applying external forces, thereby 
simplifying the robot's operation process. Conversely, 
collision detection enables the robot to accurately 
perceive external obstacles and respond accordingly, 
thus preventing harm to humans in the same 
environment. 
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Numerous theoretical studies have addressed the 
realization of two key functions: drag teaching and 
collision detection. However, most studies rely on joint 
torque sensors or six-dimensional force sensors. 
Although these methods effectively detect collision 
forces and predict the driving torque of individual joints, 
high-precision sensors are expensive, complicating 
their direct application to mass-produced robots. The 
most common method for achieving drag teaching and 
collision detection without force sensors is the 
zero-force control method. This control method enables 
the robot to move in response to external forces, thus 
minimizing the effects of friction and gravity during 
operation. Currently, the most widely used zero-force 
control methods primarily rely on compensating for 
gravity and friction [2, 3]. However, during actual 
operation, the increased speed of drag teaching raises 
the inertia effects of each joint, leading to a 
deterioration in flexibility. Therefore, the key to 
zero-force control lies in compensating for gravitational 
and frictional moments, which requires an accurate 
dynamic model of the robot; otherwise, accuracy and 
real-time performance cannot be ensured. 

Dynamic modelling is a crucial topic in robotics. 
Developing an accurate dynamic model is essential for 
force analysis, trajectory planning, and control of 
multi-degree-of-freedom manipulators. However, 
multi-degree-of-freedom manipulators possess 
numerous dynamic parameters, with strong coupling 
between joints, complicating the identification of the 
actual dynamic model. 

In recent years, several methods have been 
proposed both domestically and internationally, 
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including disassembly measurement, CAD methods, 
theoretical identification, one-time identification, and 
overall identification to determine the parameters of the 
robot's dynamic model [4-9]. In the disassembly 
measurement method, Armstrong et al. dismantled the 
PUMA560 robot and used specialized instruments to 
measure each joint individually, obtaining relevant 
inertial parameters [10-12]. Although the single-joint 
inertial parameters obtained through this method are 
highly accurate, the measurement conditions are 
stringent, the process is cumbersome, and the 
influence of joint coupling cannot be avoided. CAD 
methods, such as the one proposed by Wu Zhiyun, are 
based on finite element analysis; however, accurate 
dynamic models cannot be identified due to issues like 
assembly errors [13]. The one-shot identification 
method [14] proposed by Zhang Shiyuan et al. 
separates the front and rear three joints into two 
sections, establishes excitation trajectory signals for 
each, and conducts a single identification of the 
dynamic parameters. This method, based on least 
squares expansion, effectively eliminates experimental 
errors from multiple identifications and enhances 
calculation accuracy. However, this method does not 
yield single-joint identification parameters and can only 
be used for overall analysis. T The theoretical 
identification method relies on an accurate dynamic 
model. 

So far, the proposed theoretical modelling methods 
are relatively mature, including the Newton–Euler 
method, the Lagrange method, the virtual work 
principle, the rotational algebra method, and the Kane 
method [15, 16]. The dynamic model often deviates 
significantly from the robot's actual dynamic behaviour, 
making direct application challenging. This challenge 
can be attributed to three factors: (1) the kinetic 
parameters of the three-dimensional robot model, such 
as rod mass and inertia, are often inaccurate; (2) the 
additional driving torque generated by joints due to gap 
collisions and friction during actual operation is difficult 
to model accurately; and (3) for robots with integrated 
joints, the torque sensitivity coefficient of the motor is 
often unstable and must be identified during actual use. 

Based on the joint driving torque components 
obtained through theoretical modelling and 
experimental data identification, this paper proposes a 
synchronous identification method for the torque 
sensitivity coefficient and joint friction force in 
integrated joints. The proposed method, based on the 
theoretical gravity torque model, can simultaneously 
obtain multiple identification parameters. Finally, a 
six-degree-of-freedom robot is employed as the 
research subject to validate the accuracy and feasibility 
of the proposed dynamic parameter identification 
method. 

 

Figure 1: Six-axis lightweight collaborative robot. 
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2. DYNAMICAL PARAMETER IDENTIFICATION 
METHOD 

2.1. Theoretical Modelling of Robot Dynamics 

Zero-moment control technology is essential for 
enabling robots to perform functions such as collision 
detection and drag teaching. The connection between 
the motor and the load can be modelled as a torsional 
spring, which represents the flexibility of the joint, as 
shown in Formula 1. The dynamic model can be 
expressed as follows. 

!m = B!!! +M (q)!!q+C(q, !q) !q+G(q)+! f     (1) 

!m  is the output torque of the motor. Km is the motor 
torque constant， B is the rotational inertia, G(q) 
represents the gravitational moment, ! f is the friction 
force, and q is the rotational angle.  

2.2. Robot Single Joint Identification Experiment 

The single-axis dynamic model identification of 
each joint is conducted based on the robot body. The 
primary method involves keeping other joints stationary 
while moving the target joint under various robot poses 
and operating speeds. During the experiment, the 
joint's position, angular velocity, angular acceleration, 
and driving current are recorded. This data is then 
combined with the established robot dynamics model 
to identify the motor torque sensitivity coefficient, basic 
dynamic parameters, and friction model of the robot 
joint. 

2.3. Verification Experiment of Multi-Axis 
Comprehensive Trajectory Motion 

Based on the actual dynamic model obtained for 
each joint, we designed the motion trajectory for the 
robot to operate simultaneously across multiple axes. 
Next, we collected the position, angular velocity, 
angular acceleration, and driving current data for each 
joint during operation. We then substituted this data 
into the identified single-joint dynamic model to verify 
its accuracy. 

2.4. Applied to the Actual Function of the Robot 

Here, we applied the verified dynamic model of 
robot identification to the design of the drive-level 
dynamic feed-forward controller to compensate for the 
gravity and friction forces that occupy the dominant 
position in the driving moment, effectively improving 
the single-axis tracking accuracy. Concurrently, this 
model is used for parameter adjustment in drag 
teaching to evaluate its effectiveness. The primary 
indicator is the external force required for the smooth 

operation of the dragging robot, which eliminates the 
tedious trial-and-error process for parameter 
adjustment. 

 

Figure 2: Research idea of this project. 

3. EXPERIMENTS AND RESULT ANALYSIS 

3.1. Robot Dynamics Model 

The robot dynamics model established in previous 
research can be used directly after a simple verification 
of the correctness of its modelling process and results 
[17]. Therefore, the modelling process will not be 
repeated here. Among these, the analytical expression 
for the gravitational component in the driving torque of 
each joint is presented in Formula (2). 

          (2) 

In the formula,Gi  represents the gravity component 
of the i-th joint (i=1,2,…6). The compensation value for 
the gravitational moment (Gi ) to be overcome by each 
joint was calculated based on the gravitational 
moments of the six joints in various positions. The 
compensating torque of joint gravity can be calculated 
by using the dynamic equation. As shown in Formula 
(2), the gravity component of each joint is primarily 
expressed as a trigonometric function. Additionally, 
there is coupling between the joints, and their angles 
affect the gravity component. If the positions of the 
other joints are fixed and only one joint is operated, the 
gravity component of that joint will correspond to the 
trigonometric function of its position. In turn, this will be 
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used as the basis for performing the single-axis 
identification experiment. 

3.2. Experiment and Analysis of Joint 1 Uniaxial 
Identification 

Joint 1 is the motor located at the base of the robot, 
enabling the body to rotate around the vertical axis. 
Based on the operation mode of this joint, it can be 
inferred that the inertial force is negligible during the 
uniform motion stage, when its acceleration is relatively 
low. Additionally, the driving torque primarily serves to 
overcome friction, which may be influenced by the 
running speed and the robot's posture. To analyse the 
dynamic characteristics of Joint 1, the other joints are 
initially kept stationary, and the robot is then positioned 

vertically to initiate reciprocating motion within a 
specified range, followed by setting various speed 
levels. Subsequently, the driving current and joint 
motion data are collected to validate the relationship 
between driving torque and joint speed. Next, the 
robot's posture is adjusted to tilt while maintaining the 
same speed and range of motion during the 
reciprocating motion. Finally, data are collected again 
to validate the relationship between driving torque and 
robot posture. The two postures are illustrated in Figure 
3. 

Next, to verify their relationship, we plot the velocity 
and current curves of Joint 1 for each experiment, as 
shown in Figures 4 through 9 below. 

 

Figure 3: Two robot poses for joint 1 motion experiment. 

 

     (a) joint velocity     (b) joint current 

Figure 4: Result curve of vertical posture experiment 1.  
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        (a) joint velocity     (b) joint current 

Figure 5: Result curve of vertical posture experiment 2. 

 

 

        (a) joint velocity     (b) joint current 

Figure 6: Result curve of vertical posture experiment 3 

 

 

        (a)-joint velocity     (b)-joint current  

Figure 7: Result curve of vertical posture experiment 4.  
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        (a) joint velocity     (b) joint current 

Figure 8: Result curve of tilt posture experiment 1. 

 

 

        (a) joint velocity     (b) joint current 

Figure 9: Result curve of tilt posture experiment 2. 

The above figures indicate a strong correlation 
between the driving current curve of Joint 1 and the 
velocity curve. Additionally, when the velocity varies, 
the peak value of the corresponding current curve also 
changes, indicating that the friction force of Joint 1 is a 
function of speed. Using the steady running speed from 
each experiment in the vertical posture as the abscissa 
and the absolute average value of the corresponding 
driving current as the ordinate, we plot the 
speed-current fitting curve, as shown in Figure 10, and 
perform linear fitting to determine the correlation 
between them. 

Concurrently, the two sets of experimental results 
for the tilted posture are included in the figure and 
represented by the orange dots in Figure 10. As shown, 
under the same running velocity, the differences in 
driving current when the robot is vertical versus when it 
is inclined at 45° are 4.72% and 1.92%, respectively. 

This suggests that the influence of robot posture on the 
friction of Joint 1 can be considered negligible. 

 

Figure 10: Fitting curve of joint 1 friction force identification 
experiment. 
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Meanwhile, the relationship between the driving 
current of Joint 1 and the motion speed, obtained 
through fitting, is expressed in Formula (3), where the 
unit of current is mA , the unit of velocity is r / min , 
and the linear fitting correlation is 0.9974. The fitting 
results demonstrate a strong correlation. 

I1 = 2.0328v1 +1306.3sgn(v1)       (3) 

Notably, among the seven groups of experiments 
included in the fitting, the three groups conducted at 
low speeds (100, 150, and 300 r/min) still exhibit a 
linear friction relationship, without clear static or 
Stribeck friction characteristics. In other words, the 
friction of the joint is higher when operating at low 
speeds close to stationary than when it is in motion. 
Therefore, the running velocity of the joint during drag 
teaching typically falls within this range, allowing for 
direct application of the fitting model. 

3.3. Experiment and Analysis of Joint 2 Uniaxial 
Identification 

The driving torque of Joint 2 includes gravity, inertial 
force, centrifugal force, Coriolis force, and friction. The 
inertial and centrifugal forces can be neglected due to 
the low speed and acceleration during drag teaching. 
Gravity is solely dependent on the robot's posture, and 
its model has been previously presented (Formula 3). 
The parameters of the gravity model are simulated 
using a SOLIDWORKS 3D model. In theory, the 
accuracy must be validated through experiments, 
which show that the friction force is related to the speed 
of this joint. This may be influenced by the gravitational 
load; therefore, it is essential to fit the friction force 
model through speed change and posture change 
experiments. Additionally, since the robot's integrated 
joints utilize custom motors, the torque sensitivity 
coefficients must also be identified. However, it is 
important to note that, according to Formula (4), the 

torque sensitivity coefficients and mechanism 
parameters are on opposite sides of the equation; thus, 
they cannot be identified simultaneously. Therefore, 
this study uses the mechanism parameters as the 
benchmark, assuming that the parameters obtained 
from 3D software and the gravity torque model derived 
from theoretical modelling are accurate. 

! = K tI !G(" )+ f        (4) 

The experimental design for the motion of Joint 2 is 
outlined as follows. First, the robot is maintained in a 
vertical posture while Joint 2 is reciprocated with 
uniform acceleration and deceleration within a range of 
±45°. Various speed levels are then set to assess the 
influence of speed on the driving torque of Joint 2. 
Second, Joint 3 is bent by 90°, allowing the robot to 
repeat the previous motion in a right-angle posture, 
thereby enabling assessment of the impact of posture 
change on the driving torque of Joint 2. The two 
postures are illustrated in Figure 11. 

 

Figure 12: Current curves of joint 2 in vertical posture at five 
speed levels. 

 

Figure 11: shows the joint 2 drive current curve obtained from the motion experiment in the vertical posture at five speed levels. 



Dynamics Modelling and Adaptive Identification International Journal of Robotics and Automation Technology, 2024, Vol. 11  115 

Figure 13 shows the joint 2 drive current curve 
obtained from the motion experiment in a right-angle 
posture at three speed levels. 

 

Figure 13: Current curves of joint 2 in right-angle posture at 
three speed levels. 

As illustrated in Figures 12 and 13, when the robot 
is in the same pose and only the joint motion speed is 
varied, the amplitudes of the resulting driving current 
curves remain largely consistent. This consistency is 
due to the identical experimental motion range for each 
group, resulting in uniform gravitational changes. This 
indicates that the amplitude of the driving torque is 
independent of the joint movement speed, suggesting 
that the viscous friction effect of Joint 2 is negligible. 
The experimental results for the two postures at the 
same speed are combined into a single figure, as 
illustrated in Figure 14. 

 

Figure 14: Comparison of current curves at the same speed 
and different postures. 

As shown in Figure 14, due to the specific nature of 
the two selected postures, the gravity torques at a 
certain motion limit position are identical, while they 
differ at the other limit position, validating the driving 

current curve. This characteristic indicates that the 
gravity torque is the primary component of the driving 
moment for Joint 2, and its trend dictates the overall 
trend of the driving moment. 

Furthermore, to investigate the performance of the 
friction force in Joint 2, Figure 15 presents the drive 
current and joint rotation speed curves from the 
exercise test. 

 

Figure 15: Current and speed results of exercise 
experiments. 

As observed in Figure 15, during this series of 
uniform acceleration and deceleration reciprocating 
motion experiments, the driving torque experiences a 
sudden change at the point of speed direction reversal. 
This abrupt change exhibits clear friction 
characteristics, indicating that the friction force 
opposes the object's movement. The sudden shift in 
driving torque when the speed direction changes reflect 
the alteration in the direction of the friction force. 
Moreover, the magnitude of this sudden change is 
equal to the sum of the absolute values of the forward 
and reverse friction forces. 

Therefore, based on the theoretical gravity torque 
model and the identification experimental data, a 
synchronous identification scheme for the motor 
sensitivity coefficient and joint friction force is proposed. 
This scheme is detailed in Section 3.4. The actual 
dynamic model of Joint 2 obtained through this scheme 
is expressed as follows: 

I2 !
G2 (! )
Kt2

+
1.759 v > 0

-1.526 v < 0

"
#
$

%$
,      (5) 

Where G2 (! )  represents the calculated value of the 
gravity torque component for Joint 2, derived from the 
position information of the joints, and Kt2=7.1635  
denotes the identified torque sensitivity coefficient of 
Joint 2. 
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The model is applied to other sets of experiments. 
As shown in Figure 16, the black line represents the 
actual collected driving current curve, while the red line 
indicates the predicted current curve. The results 
demonstrate a good fit between the two curves. 

3.4. Simultaneous Identification Scheme of Torque 
Sensitivity Coefficient and Joint Friction 

Based on the joint driving torque components 
derived from theoretical modelling and the identification 
of experimental data, a synchronous identification 
scheme for the torque sensitivity coefficient and joint 
friction force in integrated joints can be proposed. This 
scheme, which uses gravity torque as a reference, 
allows for the simultaneous determination of both the 
motor’s torque sensitivity coefficient and the numerical 
values of the joint's friction force during forward and 
reverse operation. The basic steps of the scheme are 
as follows:  

(1) Based on the collected driving current and joint 
speed curves, the friction force is eliminated during 
changes in joint speed to obtain the actual current 
curve without joint friction force. Figure 17 serves as an 
example. 

 

Figure 17: The driving current curve after eliminating the 
friction force of changing direction. 

 
Figure 16: Verification results of joint 2 identification dynamic model. 
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(2) Using the collected joint position information, the 
gravity torque model from Equation (2) is applied to 
calculate the gravity component in the driving moment 
of the joint for this experiment. The resulting value is 
the theoretical numerical value. 

 (3) Using MATLAB’s Curve Fitting Toolbox, the 
driving current curve is fitted after removing friction 
from the theoretical gravity torque curve. According to 
Equation (4), a linear relationship is expected between 
them, where the linear coefficient represents the torque 
sensitivity coefficient. It is important to note that since 
the friction force eliminated in step 1 is the sum of the 
forward and reverse friction forces, the linear intercept 
does not directly represent the friction force and 
requires further processing. Figure 18 displays the 
linear fitting results. 

The linear fitting result obtained in this example 
( y = 7.206x +7.056 ) along with the correlation 
coefficient ( r2 = 0.9899 ) indicate a good fitting effect. 

(4) The motor torque sensitivity coefficient obtained 
from the fitting in step 3 is substituted into the 
theoretical gravity torque model and compared with the 
actual driving current curve. At the joint speed 
commutation, the intercepts at both ends are 
determined, allowing for the identification of the current 
values corresponding to the forward and reverse 
friction forces. Figure 19 illustrates the comparison 
results of the two curves. 

The scheme has been verified on Joint 2, as shown 
in Figure 16. It is also applicable to joints with similar 
dynamic properties, such as Joints 3 and 4, and 
requires a high degree of smoothness in the current 
curve. 

 

Figure 19: Identification of gravity torque and actual drive 
current curve. 

3.5. Experiment and Analysis of Joints 3–5 and 
Their Uniaxial Identification 

Joints 3 to 5 of this robot experience significant 
vibrations during movement due to their mechanical 
structure. Additionally, the underlying driver causes 
two-phase superposition, resulting in high noise levels 
in the drive current. Furthermore, since Joints 3 to 5 are 
positioned at the upper end of the robot, the gravity 
torque is relatively small, leading to an overall small 
amplitude of the driving torque, which complicates their 
identification. Consequently, obtaining an accurate 
identification model for these joints is challenging, 
limiting the analysis to qualitative assessments only. 

For Joint 3, we maintain the vertical posture of Joint 
2 while Joints 4 to 6 are positioned in a straight line. 
Joint 3 undergoes a reciprocating motion with uniform 
acceleration and deceleration within a range of ±45°, 
with four different levels of motion speed set to analyse 

 

Figure 18: Fitting results of theoretical gravity torque and friction-less driving current. 
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the relationship between driving current and speed. 
Figures 20 to 23 present the resulting curves from the 
four groups of exercise experiments. 

 

Figure 20: The joint 3 speed and current curve at 2100r/min. 

 

Figure 21: The joint 3 speed and current curve at 1500r/min. 

 

Figure 22: The joint 3 speed and current curve at 950r/min. 

 

Figure 23: The joint 3 speed and current curve at 300r/min. 

The results from the four experimental levels 
indicate that the peak value of the driving current 
corresponding to different reciprocating motion cycles 
fluctuates significantly at higher rotational speeds. 
Additionally, the curve waveforms become distorted 
and difficult to identify. Therefore, the last set of 
experiments is employed for identification. To address 
the issue of high current noise, the collected current 
curve is smoothed using a five-point averaging method. 
While a higher degree of filtering results in a smoother 
curve, it also carries the risk of losing important details 
and trends in the waveform; thus, repeated attempts 
are necessary. 

After filtering and eliminating the friction during joint 
commutation, the resulting driving torque is presented 
in Figure 24. As shown, the similarity to a sinusoidal 
waveform is 0.9744, indicating that fitting can be 
performed, allowing for subsequent identification. 

The identification scheme described in Section 3.4 
is applied, and the linear fitting result is displayed in 
Figure 25. 

The fitting curve is y = 4.908x +3.103 , the fitting 
degree is r2 = 0.9804  and the fitting effect is good. 
Thus, the torque sensitivity coefficient of joint 3 is 4.9. 
The currents corresponding to the forward and reverse 
friction forces of this joint are 1.928 and 1.136 A, 
respectively. 

Hence, the identification dynamic model of joint 3 is 
obtained, as shown in formula (6) below. 

I3 !
G3(! )
4.908

+
1.928 v > 0

-1.136 v < 0

"
#
$

%$
      (6) 

Due to the high noise of the joint 3 drive current, the 
noise amplitude is equivalent to the friction force value; 
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thus, the method of secondary filtering is adopted. 
However, secondary filtering has an impact on the 
accuracy of the identification results. This result is the 
highest fitting result after several attempts. 

For joint 4 of the robot, three motion speeds are set 
for the reciprocating motion experiment. The obtained 
joint 4 motion speed and driving current curves are 
shown in Figures 26–28, respectively. 

 

Figure 26: The joint 4 speed and current curve at 20% 
speed. 

 

Figure 27: The Joint 4 speed and current curve at 40% 
speed. 

As shown in these figures, the noise in the driving 
current of Joint 4 is excessively high, comparable to its 
own driving torque amplitude. Even after secondary 
filtering, obtaining accurate results remains challenging, 
with the fitting degree consistently falling below 0.8. 
This indicates that identification cannot be 
accomplished with the existing experimental data. 
However, the friction force of Joint 4 can be 

 

Figure 24: The sine fitting result of the current curve after removing friction. 

 

 

Figure 25: The fitting results of the joint 3 theoretical gravity torque and the friction-less driving current curve. 
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qualitatively analyzed by examining the current curve. 
In Figure 26, a sudden change in friction force related 
to the direction of speed is evident. Additionally, when 
Joint 4 transitions from the uniform motion phase to the 
deceleration phase, the driving torque experiences a 
sudden drop, suggesting the presence of a component 
associated with acceleration direction. Thus, it can be 
inferred that the driving torque of Joint 4 consists of the 
basic gravity torque, the forward and reverse frictional 
forces, the frictional force related to acceleration 
direction, and possibly a significant inertial force. 

For Joint 5, three motion speeds are established for 
the reciprocating motion experiment. The resulting 
motion speed and corresponding driving current curves 
for Joint 5 are displayed in Figures 29 to 31. 

 

Figure 29: The joint 5 speed and current curve at 20% 
speed. 

As shown in the figures, compared to Joint 4, the 
driving current of Joint 5 exhibits higher noise levels 
and is closer to its own driving torque amplitude, 
making it challenging to obtain accurate identification 
results. Furthermore, a qualitative analysis of the 

friction force in Joint 5 reveals a strong correlation 
between the driving current and movement speed. This 
characteristic is similar to that of Joint 1, as Joint 5 is 
located at the end of the mechanism, where the 
influence of gravity torque on the driving torque is 
minimal, highlighting its pronounced viscous friction 
properties. 

 

Figure 30: The joint 5 speed and current curve at 40% 
speed. 

 

Figure 31: The joint 5 speed and current curve at 60% 
speed. 

3.6. Verification Experiment of Multi-Axis 
Comprehensive Trajectory Motion 

To verify the accuracy of the obtained dynamic 
model, a multi-axis comprehensive trajectory motion 
experiment is designed following the identification of 
the single-axis dynamic model for each joint based on 
the robot body. The position-time curves for each joint 
during the experiment are presented in Figure 32. In 
this set of experiments, Joints 1 to 5 all executed 
reciprocating motions with uniform acceleration within 
their individually set ranges. 

The comparison between the predicted driving 
current of Joints 1 and 2 and the actual collected 

 

Figure 28: The joint 4 speed and current curve at 60% speed. 
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values is shown in Figure 33. The prediction results are 
relatively accurate; however, Joints 3 to 5 cannot be 
predicted at this time due to the inability to obtain an 
accurate identification model. 

4. CONCLUSION 

This study introduces a dynamic parameter 
identification method based on the Lagrangian 
approach, effectively identifying the dynamic models of 
joints in a multi-degree-of-freedom manipulator. Our 
findings indicate that joint posture and operating speed 
significantly influence driving torque, particularly in 
joints 1 and 2. This method not only mitigates the 
impact of joint friction but also determines the motor 

torque sensitivity coefficient, enhancing control 
precision. Compared to traditional high-cost sensor 
methods, this approach offers a more economical 
solution while emphasizing the importance of 
theoretical validation. Despite its contributions, 
limitations remain, particularly in the identification of 
joints 3 to 5 due to high noise and low gravitational 
torque. Future research should focus on advanced 
signal processing techniques, the development of 
refined dynamic models, and the application of this 
method across various robotic systems to assess its 
broader applicability. This work lays a foundation for 
further advancements in robotic control and smart 
manufacturing technologies. 

 

Figure 32: The 5 joints’ speed and current curve at 60% speed. 

 

 

        (a) joint 1      (b) joint 2 

Figure 33: Comparison of current prediction of joint 1 and joint 2 and actual results of trajectory motion.  



122  International Journal of Robotics and Automation Technology, 2024, Vol. 11 Chen et al. 

CONFLICTS OF INTEREST 

No potential conflict of interest was reported by the 
authors. 

REFERENCES 

[1] Han Yon. Research on collaborative robot model 
identification method and human-computer interaction 
control technology [D]. Shanghai Jiaotong University 2020; 
3-5. 

[2] Fang Junwei, Wang Binrui, Xie Shenglong, Ren Haijun. 
Industrial robot dynamics parameter distribution identification 
and zero-force control teaching [J]. Mechanical Design and 
Manufacturing. 2021. 

[3] Chen Saixuan. Research on zero-force control and collision 
detection technology of collaborative robots [D]. University of 
Science and Technology of China 2018; 61-63. 

[4] Zhang Tie, Liang Xiaohong, Qin Binbin, Liu Xiaogang. 
SCARA robot dynamics parameter identification based on 
Newton's Euler method [J]. Journal of South China University 
of Technology, 2017; 45(10): 129-130. 

[5] Jidong Jia, Minglu Zhang, Changle Li, Chunyao Gao, Xiezhe 
Zhang, Jie Zhao. Improved dynamic parameter identification 
method relying on proprioception for manipulators [J]. 
Nonlinear Dynamics. 2021; 1-16. 

[6] Sun Jing, Han xueyan, Li Tong, Li Shihua. Dynamic 
Parameter Identification of a Pointing Mechanism 
Considering the Joint Clearance [J]. Robotics 2021; 10(1): 
36. 
https://doi.org/10.3390/robotics10010036 

[7] Pan Bingwei, Lv Yan, Jiang Jinfeng, Xue Peijiao. Research 
on the dynamic parameter identification method of 
collaborative robots [A]. Shanghai Electric Technology 2019; 
12(4): 1-2. 

[8] Claudio Urrea, Jose Pascal. Design and validation of a 
dynamic parameter identification model for industrial 

manipulator robots [J]. Archive of Applied Mechanics. 2021; 
1-27. 
https://doi.org/10.1007/s00419-020-01865-2 

[9] Li Yongquan, Wu Pengtao, Zhang Yang, Zhang Lijie. 
Dynamic parameter identification and control of spherical 
two-degree-of-freedom redundant drive parallel robot system 
[J]. China Mechanical Engineering 2019; 30(16): 1967-1968. 

[10] Armstrong. B, Khatib O, Burdick J. The explicit dynamic 
model and inertial parameters of the PUMA 560 arm [C]. 
Proceedings of 1986 IEEE International Conference on 
Robotics and Automation. San Francisco, CA, USA: IEEE, 
1986; 510-518. 
https://doi.org/10.1109/ROBOT.1986.1087644 

[11] Chan S P. An efficient algorithm for identification of robot 
parameters including drive characteristics [J]. Journal of 
Intelligent and Robotic Systems, 2001; 32(3): 291-305. 
https://doi.org/10.1023/A:1013918927148 

[12] Sousa C. Dynamic model identification of robot manipulators: 
solving the physical feasibility problem [D]. Coimbra: 
University of Coimbra, 2014. 

[13] Wu Zhiyun, Fu Limin. Finite element algorithm of inertial 
parameters of robot operator[J]. Journal of Inner Mongolia 
University of Technology 1995; 14(3): 7-11. 

[14] Zhang Shiyuan, Dai Jun, Deng Hua. Dynamic parameter 
identification of a six-degree-of-freedom robotic arm[A]. 
Manufacturing Automation 2021; 43(3): 36-37. 

[15] Cai Zixing. Robotics [A]. Beijing: Tsinghua University Press, 
2009; 73-75. 

[16] Arun Banerjee. Flexible Multibody Dynamics: Algorithms 
Based on Kane’s Method [B]. CRC press.2022. 
https://doi.org/10.1201/9781003231523 

[17] Saixuan Chen, Jie Yang1, Guohua Cui, Fuzhou Niu, 
Baiqiang Yao and Yu Zhang. Robot Zero-Moment Control 
Algorithm Based on Parameter Identification of Low-Speed 
Dynamic Balance [J]. Computer Modeling in Engineering & 
Sciences 2023; 134(3): 2021-2038. 
https://doi.org/10.32604/cmes.2022.022669 

 
Received on 04-10-2024 Accepted on 11-11-2024 Published on 23-11-2024 

https://doi.org/10.31875/2409-9694.2024.11.09 

© 2024 Chen et al. 
This is an open-access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the work is properly cited. 
 


