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Abstract: The theoretical and experimental investigations on involute-helix gear drive are carried out in this paper. 
Based on the generation principle and mathematical models, parametric design for tooth profiles is provided and three-
dimensional solid models are established for simulation of motion. The general characteristics of involute-helix gears are 
discussed including undercutting condition, the separability of central distance, sliding and meshing characteristics. The 
meshing essence of tooth surfaces is revealed. Transmission efficiency experiment is made based on the developed 
gear prototype and the influence factors for the obtained results are also shown.  
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1. INTRODUCTION  

Involute gearing has found widespread applications 
due to its simplicity for manufacture, mesh in line 
contact, constancy of meshing angle, and insensitivity 
to central distance variation [1]. The characteristics 
make them not only suitable for parallel axis 
transmission, but also to cases with intersecting or 
skew axes. However, the involute profile has the 
problems of relatively low-contact load capacity, poor 
lubrication and proneness to interference, which cannot 
satisfy the current requirements for high performance 
[2].  

Many studies have been carried out to develop 
various concepts, design and analysis approaches 
toward this destination and a series of novel gear 
drives are also proposed to improve the transmission 
performance and fulfill different requirements [3-11]. 
According to the aforementioned research, the novel 
involute-helix gear drive characterized by the 
advantages of involute and circular-arc gears has been 
put forward by the authors [12]. It has point contact with 
the convex and concave circular-arc tooth profiles and 
the contact tracing line of tooth surfaces is an involute-
helix curve whose projection on the gear end-face is a 
segment of involute.  

The generation principle and mathematical models 
were developed based on the proposed theory of 
conjugate curves [12-14]. To evaluate the gear 
performance and reveal the good transmission 
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characteristics, the further theoretical and experimental 
investigations on this gearing will be carried out, which 
is also of importance from the engineering application 
perspective. The remainder of this article is organized 
into four sections. In the following section, the 
geometric design of involute-helix gear drive is 
introduced. According to the given involute-helix curve, 
the general characteristics of this transmission are 
developed in the next section. The subsequent section 
analyzes the transmission efficiency of gear prototype. 
Finally, a conclusive summary of this study is given in 
the last section.  

2. GEOMETRIC DESIGN OF INVOLUTE-HELIX 
GEAR PAIR 

2.1. Generation Method and Mathematical Models 

The tooth surfaces of involute-helix gears are 
generated based on the theory of conjugate curves. 
There are four steps for the generation processes [13-
14]: 

(1) Solution of the conjugated curve in the given 
contact position according to the given involute-
helix curve. 

(2) Equidistant motion along the designated normal 
vector for the conjugate-curve pair. Specially, the 
radius of concave tooth profile is slightly larger 
than that of convex tooth profile. The 
equidistance in a convex tooth is along the 
positive direction of common normal while it is 
reverse in a concave tooth.  

(3) Generation of the spherical enveloping surface 
of the equidistant curve based on the envelope 
theory of single parameter family. 
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(4) Determination of tooth profiles inheriting the 
meshing characteristics of conjugate involute-
helix curves in the limited range with the 
addendum and addendum cylinder surfaces.  

Based on the simplified generation processes 
shown in Figure 1, the mathematical models are 
established and the equations of tooth surfaces of the 
driving pinion and driven gear are derived as  

  

x!1 = xhx1 + h1 cos" cos# '

y!1 = yhy1 + h1 cos" sin# '

z!1 = zhz1 + h1 sin"

xhx1
' ($ ) cos# '+ yhy1

' ($ ) sin# '+ zhz1
' ($ ) tan" = 0

%

&

'
''

(

'
'
'

        (1) 

and 

  

x!2 = xhx2 + h2 cos" cos# '

y!2 = yhy2 + h2 cos" sin# '

z!2 = zhz2 + h2 sin"

xhx2
' ($ ) cos# '+ yhy2

' ($ ) sin# '+ zhz2
' ($ ) tan" = 0

%

&

'
''

(

'
'
'

      (2) 

where θ is the curve parameter. h1, h2 are the 
designated equidistance for different curves. xhx1, yhy1, 
zhz1 are the coordinate components of equidistant curve 
of the given involute-helix curve. xhx2, yhy2, zhz2 are the 
coordinate components of equidistant curve of the 
conjugated curve. 

 
! ," ' are the parameters of spherical 

enveloping surface. The variation range of the 
parameter !  is

 
!0.5" # $ # 0.5" , whereas for  ! '  the 

range is 0 ! " ' < 2# .  

2.2. Parametric Design of Tooth Profiles 

According to aforementioned approach, the normal 
sections of convex and concave tooth profiles are 
developed, respectively. The mating tooth profiles are 
designed as displayed in Figure 2. And it mainly 
contains three parts: the contact region, tooth fillet and 
tip/root limit. The parametric items of tooth profiles are 
given in Table 1. 

The convex and concave tooth profiles mesh in 
point contact. The ideal contact condition can be 
realized considering the conjugate-curve pair and 
optional contact direction simultaneously. As depicted 

 
Figure 1: Generation processes of tooth surfaces.  

 
     a      b 
Figure 2: Tooth profiles in normal section: (a) convex tooth profile; (b) concave tooth profile.  
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in Figure 3, the tooth profiles contact in unique point 
which is also the common tangent point. Γ1 and Γ2 are 
the conjugate involute-helix curves. Σ1 and Σ2 are the 
generated tooth surfaces.  

 
Figure 3: Point contact of mating tooth profiles. 

2.3. Three-Dimensional Solid Models 

The meshing surfaces of convex and concave tooth 
profiles are established based on the previous study. 
According to the developed equations in Ref. [12], a 
computer program for mathematical calculation based 
on MATLAB software is developed. The results are 
integrated and exported to the 3D drawing software UG 
and the precise three-dimensional solid models of 
gears can be created based on the geometric 
parameters in Table 2.  

Based on the established models in Figure 4, a 
computerized simulation of meshing process is carried 
out in order to demonstrate its feasibility and evaluate 
the contact conditions. The results are observed as 
follows: (1) the gears can transmit rotational motion 
with a constant gear ratio and continuous transmission 
between two mating tooth surfaces; (2) tooth surfaces 

Table 1: Parametric Design of Tooth Profiles of Involute-Helix Gears 

Parameters Convex tooth profile Concave tooth profile 

Pressure angle α 20°~35° 20°~35° 

Tooth height hi(i=1, 2) 1.5mn 1.52mn 

Tooth addendum height hai(i=1, 2) 1.2339mn 0.1661mn 

Tooth dedendum height hfi(i=1, 2) 0.2661mn 1.3539mn 

Radius of circular-arc tooth profile ρi(i=a, f) 1.5mn 1.52mn 

Movement distance of circle centre ei(i=a, f) 0 0.01mn 

Offset distance of circle centre li(i=a, f) 0.5895mn 0.5596mn 

Distance between contact point and pitch curve hk 0.6339mn 0.6339mn 

Tooth thick in contact point Si(i=a, f) 1.54mn 1.54mn 

Tooth space in contact point ω ik(i=a, f) 1.6016mn 1.5416mn 

Tooth crack j 0 0.05mn 

Circle radius of tooth root rgi(i=a, f) 0.4mn 0.452mn 

Process angle δi(i=a, f) 4°2′31′′ 4°52′55′′ 

Addendum chamfer angle of concave tooth γe none 45° 

∗mn represents the normal modulus.  

Table 2: Geometric Parameters of Involute-Helix Gear Drive 

Parameters Values Parameters Values 

Radius of pitch circle of pinion r1 22mm Radius of tooth profile of pinion ρ1 4mm 

Radius of pitch circle of gear r2 68mm Radius of tooth profile of gear ρ2 4.4mm 

Module mn 4mm Helix parameter p 28.6478 

Tooth number of pinion Z1 11 Equidistant distance of pinion d1 4mm 

Tooth number of gear Z2 34 Equidistant distance of gear d2 4.4mm 

Pressure angle α 30° Tooth width B 30mm 

Transmission ratio i21 3.09 Range of curve parameter t 0~1.05rad 
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are in mesh with point contact along the conjugate 
curves in the axial direction, and the properties of 
curves are inherited with the process of meshing 
motion; (3) no meshing interference between the 
couple tooth surfaces can be found. 

 
Figure 4: Three-dimensional solid models of involute-helix 
gears.  

3. GENERAL CHARACTERISTICS OF GEAR DRIVE 

3.1. Undercutting Condition  

Tooth undercutting occurs when a singular point 
appears on the tooth surface. For the involute-helix 
gears, the pinion is more sensitive to undercutting due 
to the designed few numbers of teeth. Taking the single 
tooth flank as an example, the equation of contact 
region is expressed as  
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Where ρ is the radius of convex tooth profile, e is 
movement distance of circle centre and l is offset 
distance of circle centre. ! represents the pressure 
angle and β is helix angle. u expresses the displa-
cement of tooth profile in axial direction. 

The approach proposed by F.L. Litvin [15] is used to 
analyze this problem. Surface Σ1 which is the tool 
surface represented in two-parameter form generates 
gear tooth surface Σ2. Appearance of singular points on 
Σ2 is the warning that the surface may be undercut in 
the process of generation. The definition of singularity 
of Σ2 may be represented by equation 
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sliding velocity. Based on the previous study, this 
relationship can be obtained as 
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dimensional vectors for spatial and planar gearing, 
respectively. These vectors are represented in 
coordinate system S1 which is connected to driving 
pinion 1 based on the principle of conjugate curves 
[13]. And equation (4) expresses a system of linear 
equations in two unknowns:   dt / ds and
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has the rank r=2. This yields  
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conditions for the generated tooth surface Σ2. 



6     Journal of Modern Mechanical Engineering and Technology, 2014, Vol. 1, No. 1 Liang et al. 

Furthermore, a sufficient condition for singularity of Σ2 

can be represented by 
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Substituting Eq. (3) into the above equations, the 
undercutting condition of tooth surfaces is obtained as 
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There is a simple way to avoid singularity and 
undercutting of a generated surface, it has  
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The equations determine a line which has to limit 
the generating surface Σ1. In many cases, this can be 
achieved by choosing appropriate settings for surface 
Σ1 that generates Σ2.  

3.2. The Separability of Central Distance 

The influences on contact and bending stress of 
gear tooth are unavoidable due to center distance 
error. Because of the characteristics of involute tooth 
profile, this new gear transmission has the typical 
separability of center distance. The gear drive can keep 
the transmission ratio unchanged even if the central 
distance has changed. So the properties of the 
involute-helix gear are beneficial for its manufacturing, 
assembly and application. 

The acute angle between the direction of 
circumferential velocity at the node P and line of action 
is called the meshing angle. The node P is the 
intersection between the common normal at the contact 
point of mating tooth profiles and the line connecting 
two circle centres of pinion and gear. According to the 
installation with standard center distance, the pitch 
circles of two gears and their reference circles coincide 
with each other, and the meshing angle is equal to the 
pressure angle of the reference circle. When the actual 
center distance a′ and standard center distance a are 

                             
     a      b 
Figure 5: The changes of center distance: (a) increased center distance; (b) reduced center distance.  
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not the same, the reference circles cannot tangent with 
each other. The radius of the pitch circle is larger than 
that of the reference circle, then the corresponding 
meshing angle changes to   a ' cos! ' = a cos! . 

Figure 5a reflects the change of actual meshing 
section on line of action under the case of increased 
center distance. In the case of standard center 
distance, the centers of convex and concave tooth 
gears locate on the points O1 and O2, respectively. The 
theoretical meshing segment is N1N2, and the actual 
track is K1K2. The entire contact traces within this range 
are involved in the mesh. We assume that the convex 
pinion is fixed and the center O2 of concave gear 
moves down to O2′ along the center line of two gears. 
The error occurs while the center distance has been 
increased. It can be seen that the meshing angle, line 
of action and the node position also change. The 
theoretic mating segment is now N1′N2′, and the actual 
track has changed into K1′K2′. Only part of contact 
tracing line is in mesh but the transmission ratio still 
remains unchanged. 

Figure 5b depicts the change of actual meshing 
section on line of action under the case of reduced 
center distance. Through the analysis, the entire 
contact tracing lines are still involved in the mesh and 
the transmission ratio is also unvaried. 

3.3. Sliding Characteristic 

The general calculation method of sliding ratios of 
involute-helix gear pair is studied. Supposing a driving 
gear with original curve Γ1 transmits movement to a 
driven gear with its conjugated curve Γ2, they contact at 
point K as displayed in Figure 6. ΔS1 and ΔS2 denote 
respectively the travelling arcs of conjugate curves Γ1 
and Γ2 in a period of time Δt which approaches to zero 
during the meshing process. Assuming the relative 

sliding exists, the length of arc KK1 is not equal to that 
of arc KK2, and the difference between ΔS1 and ΔS2 is 
called the sliding arc. The sliding coefficient is analyzed 
as a ratio of the length of sliding arc relative to the 
length of the corresponding arc in meshing area. 

The calculation formulas of sliding ratios of gear pair 
can be expressed as 
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The parametric forms of conjugate involute-helix 
curves Γ1 and Γ2 are respectively expressed in Ref. 
[12]. The equation of given contact locus of pinion 1 is 
represented as 
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where r is the radius of basic circle. p is the screw 
parameter. θ is the involute parameter and the range of 
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It contains only single parameter θ in equation (12), 
and the form is a space involute which is spiral in 
nature. Based on the given curve of driving pinion 1, 
considering the transformation relation r2=M21r1 and the 
equation of meshing simultaneously, the equation of 
the conjugated curve of driven gear 2 is expressed as 
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Where 
 

Figure 6: Sliding condition of tooth profiles.  
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i21 is the transmission ratio of gear pair. 
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Substituting the equations into equations (10) and 
(11), the sliding ratios of involute-helix gear drive can 
be obtained as 
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Utilizing the mathematical parameters in Table 2, 
the graph of sliding ratios between involute-helix gear 
pair is obtained. As shown in Figure 7a, we can draw 
that: (1) the sliding coefficients during the engagement 
process are the function with respect to parameter θ; 
(2) the sliding coefficients of gear pair only pass 
through zero at the pitch point (  ! = 0.403rad ) and the 
symbols change due to the various direction of sliding 
velocity when the nearby contact points on both sides 
begin to mesh; (3) the maximum absolute values occur 
at the tooth root where the gear teeth mesh in and out. 
However, because of the contact of convex and 
concave tooth profiles, the absolute values of sliding 
coefficients are always smaller than 0.1 with the growth 
of parameter θ, which is close to 0. The sliding ratios of 
the corresponding in volute gear drive are also 
calculated and listed in Figure 7b for comparison. 

The comparison relationship of both gears is 
described. According to the developed results, the 
sliding coefficients of the involute-helix gear drive are 
smaller than that of involute gear drive, which can 
improve the transmission performance. The meshing 
can realize limit position and the approximate pure 
rolling contact may be accomplished. This method is 
suitable for arbitrary conjugate tooth profiles that 
contact along specific locus in axial direction, and it 
does not need to derive complicated geometrical 
relationship for calculation. 

 
3.4. Meshing characteristic 

The involute-helix gears mesh in point contact along 
the action line with the location change of the 
instantaneous contact point. A computer program is 

 
     a       b 
Figure 7: Sliding ratios of gears: (a) sliding ratios of involute-helix gears; (b) sliding ratios of involute gears.  
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developed to simulate the meshing of tooth surfaces 
with UG software.  

As shown in Figure 8, the simplified model of 
convex and concave tooth surfaces is given. The 
engagement of tooth surfaces at the initial position is 
displayed in Figure 8(a). When the gear pair rotates 
with a fixed angular velocity, tooth profiles begin the 
continuous and tangent contact along conjugate 
involute-helix curves. The neighbouring points 
gradually follow into contact with the movement in the 
axial direction. The meshing condition at an arbitrary 
position is described in Figure 8(b). During the whole 
process, the convex and the concave tooth surfaces 
mesh in point contact. The instantaneous contact point 
of the conjugate curves moves along the line of action 
in the axial direction. The rolling diagram of the tooth 
surfaces of the gears is further shown in Figure 9. 

 
Figure 9: Rolling diagram of tooth surfaces.  

It can be seen that the gears keep point contact with 
each other from initial position and separate at last. 
Line of action is depicted as a straight line. Throughout 
this process, contact point changes along the direction 
of line of action with those curves, and the line of action 
is a skew line whose projection on the gear end-face is 
the general meshing line of involute gearing.  

Only a pair of conjugate curves maintains 
continuous and tangent contact with each other during 
motion, and the transmission process contains the 
meshing characteristics of conjugate curves. The 
engagement in the axial orientation between tubular 
tooth profiles has the same normal vector with 
conjugate curves at contact point. Through analysis, 
the normal for both meshing pair are coincident and the 
contact locus on mating tooth surfaces is also the 
conjugate involute-helix curve pair.  

4. PERFORMANCE EXPERIMENT 

For the two gears, they are processed with the 
hobbing cutters which fulfil the requirement of 
manufacturing precision. The hobs generated by rack 
cutters are designed and manufactured based on 
tubular tooth profiles. The hobbing trials have been 
carried out using YS3140CNC hobbing machine which 
is controlled by SIEMENS 840D system. It has the 
advantages of good transmission stability, working 
accuracy and operability. The hob cutting for 
generating the gears includes four movements: rotation 
of the workpiece about its axis, rotation of the hobbing 
cutter about its axis and feed motions of the hobbing 
cutter in radial and axial direction.  

 
Figure 10: Gear prototype.  

            
Figure 8: Meshing motion of tooth surfaces.  
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The pinion and gear based on the hob cutting 
principle are generated. The final accuracy of gear pair 
satisfies the design requirements according to the 
measurement of instrument. The final gear prototype is 
completed and depicted in Figure 10.  

The performance experiment of the reducer 
prototype had been made to evaluate its transmission 
property. For the investigation of operational 
characteristics, the layout of test system is considered. 
The equipments are linked by spring coupling. The 
input and output powers are measured with the each 
torque and rotational speed transducer. Oil 
temperature in the box is measured by the temperature 
transducer. Rotational speed is controlled by the 
variable speed electric motor, and the gear pair is 
loaded by the loading motor. The performance 
parameters of the equipments are listed in Table 3 and 
the trial site is shown in Figure 11.  

The contact point between the conjugate tooth 
profiles will spread over a small area under the load 
due to elastic deformations. So the contact condition is 
localized. Generally, the larger the contact area is, the 
higher the load capacities of gear drive will be. To 
achieve a better performance, it is necessary to carry 

out the running-in process. It can expand the contact 
area for increasing the load capability and modify the 
gear tooth surfaces for reducing noise and vibration. 
The whole process was divided into five periods: 
Period one, after 2 hours' idle running with input shaft 
speed of 1250rpm, was followed by the second period 
of 2 hours with the operation under load (in this case 
the output torque is 300Nm). The third period lasted 2 
hours under load (in this case the output torque is 
400Nm). The fourth period lasted 2 hours under load 
(in this case the output torque is 500Nm) and the lasted 
period for another 2 hours under the load (in this case 
the output torque is 600Nm). After the 10 hours 
running-in period, the ideal contact condition is 
realized.  

The input torque Ti and input shaft speed ni can be 
measured by the torque and rotational speed 
transducer I, while the output values To and shaft 
speed no can be measured by the torque and rotational 
speed transducer II. The transmission efficiency can be 
calculated as ! = n

o
T
o
/ n

i
T
i
. The settings of test pro-

cedure are given as follows: the speeds are 500r/min, 
750r/min, 1000r/min and 1250r/min, for the load, it is 
applied with 300Nm, 400Nm, 500Nm, and 600Nm. The 

Table 3: Performance Parameters of Equipments 

Equipment name Model number Performance parameters 

1-Driving motor YVPCG250M1-50 Power: 55 kWSpeed: 0-4500 rpm 

2-Torque and rotational speed transducer I JC1A Nominal torque: 50 Nm 

3- Gear Prototype None Centre distance: 90 mm Gear ratio: 3.09 

4-Torque and rotational speed transducer II NJ2A Nominal torque: 2000 Nm 

5- Gearbox reducer CW100-63 Centre distance: 144 mm Gear ratio: 5 

6-Loading motor YVPCG315M3-16.7 Power: 55 kW Torque: 0-1051 Nm 

7-Temperature transducer WZP PT100 Temperature: -200°C-600°C 

 
Figure 11: Testing site.  
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oil temperature which is corresponding to each stage is 
also recorded.  

The transmission efficiency under different 
operating conditions is shown in Figure 12. It can be 
concluded that the transmission efficiency will increase 
if increasing rotational speed and keeping torque 
constant. Similarly, it will also increase if increasing 
torque and keeping rotational speed constant. The 
maximum efficiency may be up to 96.9% at the load of 
600Nm and the whole efficiency of prototype is in the 
range of 91.8%~96.9%. The oil temperature arrives at 
balance when the time is 60~70 Min. and its highest 
value is about 65.6°C with respect to the room 
temperature. Compared with conventional involute gear 
drive, the transmission efficiency of the proposed gear 
drive is probably lower. There are two main reasons 
affecting the transmission efficiency: (1) The mating 
gear pair is processed with the designed hobbing 
cutters. The tooth surfaces are only generated by the 
rough hob cutting process so that the manufacturing 
precision cannot fulfil the ideal requirement. (2) 
Because of the existence of machining errors and 
assembly errors in the involute-helix drive, the actual 
contact area may less than the theoretical contact area 
and the sliding between mating tooth surfaces also 
occurs.  

 
Figure 12: Transmission efficiency of proposed gears.  

5. CONCLUSIONS 

The parametric design of involute-helix gear drive is 
proposed based on the developed generation principle 
and mathematical model. The convex and concave 
tooth profiles are provided, respectively. According to 
the established solid models of gear pair, the 

simulation of motion is carried out and the results show 
that it accords with the design expectation  

The undercutting condition of mating tooth surfaces 
is provided. The separability of central distance of 
involute-helix gear drive is discussed. The results 
indicate that the transmission ratio remains unchanged 
even if the central distance has changed.  

Based on the conjugate-curve pair, a calculation 
method for sliding ratios of this gearing is put forward 
and the result shows that the sliding coefficients are 
smaller than that of involute gear drive and the 
approximate pure rolling contact may be accomplished.  

The point contact characteristic is studied. Only a 
pair of conjugate curves maintains continuous and 
tangent contact in the axial direction with each other. 
The normal for tooth surfaces and conjugate involute-
helix curves at contact point are coincident and the 
contact locus on mating tooth surfaces is also the 
conjugate involute-helix curve pair. 

The efficiency experiment of gear prototype is 
accomplished based on the manufactured pinion and 
gear designed by hobbing cutters. The maximum 
efficiency may be up to 96.9% at the load of 600Nm 
and the whole efficiency of prototype is in the range of 
91.8%~96.9%. It shows the direct proportion with the 
change of rotational speed and torque.  
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