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Abstract: The updating stopping condition (USC) has great impact on the effectiveness of a predictive maintenance 
(PdM) policy, but did not receive enough attention. This paper reviews the common USCs, proposes a residual life 
based USC, and evaluates the influence of the USCs on the effectiveness of a PdM policy. The commonly used USCs 
are concretely defined in a PdM policy based on the stochastic linear degradation model. An extensive numerical 
investigation compares the performances of the PdM policy using different USCs. The investigation results verify the 
importance of optimizing the USC for a PdM policy. 

Keywords: Updating stopping condition, predictive maintenance, maintenance optimization, reliability. 

1. INTRODUCTION 

The economic relevance of maintenance in all 
sectors of industrial sectors is continuously promoting 
the advance of maintenance technology and 
management [1]. Nowadays, maintenance policies 
such as condition-based maintenance (CBM) and 
predictive maintenance (PdM) are important research 
subjects in reliability engineering. Due to the systematic 
collection of system condition information, reasonable 
prediction of future development of system condition, 
and a wise balance between maintenance cost and risk 
of system failure, PdM can effectively improve asset 
reliability, reduce maintenance cost, extend useful 
lifetimes and reduce safety risks [2-4]. Different from 
the population-oriented preventive maintenance (PM) 
policies and CBM policies, a PdM policy optimizes the 
maintenance schedule based on the system’s condition 
information monitored in real time. Consequently, the 
optimized maintenance schedule in a PdM policy is 
only applicable to the specific system being monitored. 
In addition, the PdM policy updates the maintenance 
schedule with the arrival of the system’s most recent 
condition monitoring information. Consequently, a PdM 
policy needs an updating stopping condition (USC) to 
stop the update of the maintenance schedule and 
decides the final maintenance time.  

An updating step length based USC is proposed for 
a component-level sequential PdM policy in [5]. Based 
on the proposed USC, the update of the maintenance 
schedule is stopped once the distance between the 
maintenance schedule and the current moment is less 
than the updating step length. Kaiser and Cebraeel 
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used a reliability based USC in a component-level PdM 
policy based on an updating system degradation model 
[6]. Curcuru, Galante and Lombardo decided the 
updating stopping moment through comparing the ex-
pected maintenance cost in the considered time int-
erval with and without a PM action in each decision 
moment [7]. Zio and Compare proposed to perform a 
PM act when the current moment is the optimized 
maintenance schedule or the system’s condition reac-
hes the safety threshold with a given probability [1].  

Although many researchers have used the USCs in 
different PdM policies, most of the studies focus on the 
development of PdM models and the optimization of 
maintenance schedule. Actually, a USC is a key factor 
which decides the final maintenance time and 
essentially influences the effectiveness of a PdM 
policy. Stopping the update of maintenance schedule 
when the system is still normally operating is 
ineffective, as the condition monitoring information 
closer to system failure is simply ignored when 
deciding the maintenance schedule. On the other hand, 
an overaggressive USC could lead to system failure 
before maintenance acts due to the rapid change of 
system condition. An ideal USC should make a wise 
balance between scheduling maintenance acts using 
more recent system conditions and the risk of 
unexpected system breakdowns. By the above 
motivations, this paper focuses on the effect of USCs 
on the effectiveness of PdM policies and their 
optimization. In addition, an extended updating step 
length based USC and a novel residual life based USC 
is proposed to be valuable alternates in the USC 
library. 

The rest of the paper is organized as follows: 
Section II reviews the commonly used USCs, extends 
the updating step length based USC and proposes a 
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residual life based USC. Section III gives an example 
PdM policy, concretizes the USCs in the given PdM 
policy. Section IV evaluates the USCs based on an 
extensive simulation study. Finally, sectionV concludes 
the paper. 

2. USCS FOR PDM POLICIES 

This section reviews the commonly used USCs in 
PdM policies with some extensions. It is noted that the 
mentioned USCs are primarily proposed for single-unit 
systems, the relationship between units in multi-unit 
systems are not strictly considered, which may suggest 
group maintenance. 

The 1st commonly used USC is the updating step 
length based USC [5], and can be given as: 

  
T

*
t( ) ! t " #t            (1) 

where t is the current moment, 
  
T

*
t( )  is the PM 

schedule suggested by the PdM model closest to the 
current moment, t!  is the updating step length or the 
sampling interval of condition monitoring. The USC in 
Eq. (1) suggests updating stopping and PM acts at time 
t when the distance between the current moment and 

  
T
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t( )  is smaller than the updating step length. When 

the degradation process becomes noisy and the 
predictions of the system’s future health become very 
uncertain, the USC in Eq. (1) may easily lead to abrupt 
system breakdown. To avoid the unexpected failure, 
the USC in Eq.(1) can be extended as 
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where n is an positive integer.  

The 2nd commonly used USC is the reliability based 
USC. Kaiser and Gebraeel proposed a reliability based 
USC as follows [6]: 
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interpretation for the USC in Eq. (3) is to stop updating 
of maintenance schedule when the failure probability in 
a time interval 

  
t

k
, t

k+!( )  exceed a certain value. In 
practice, people may be more concerned with the 
reliability level of the system, and the reliability based 
USC can be in the form as follows: 
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where R’ is the reliability threshold. The interpretation 
for the USC in Eq. (2) is to stop updating of 
maintenance schedule when the expected system 
reliability at time 

  
T

*
t( )  is smaller than the ideal 

reliability level R’.  

The 3rd commonly used USC is the condition based 
USC. Zio and Compare suggested performing the PM 
acts when the probability of system condition to be 
worse than the safety level is larger than a certain 
threshold [1]. They estimated the system condition 
using particle filtering. In a PdM policy, the condition 
based USC can be 
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where 
 
s t( )  the system condition at current time t, 

 
s

r
 is 

the condition level, 
 
r

s
 is the probability threshold for the 

system’s condition. The USC in Eq. (5) means to stop 
updating and perform a PM act at time 
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probability of the system’s condition to be worse than 
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r
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s
. To use the USC in Eq. (5), the 

mapping function between the system’s monitored 
performance variables and its health state should be 
defined. If the system’s performance variables can 
directly reflect its health state, then the USC in Eq. (5) 
can be reduced as  
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that Eq. (6) is applicable to the case of the greater 
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better, Eq. (6) should be revised as 
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In some cases, the residual lifetime of a system 
may be a more understandable variable to 
maintenance engineers or manufacturing managers, as 
it directly tells the time interval the system can continue 
to survive. In such cases, a residual life based USC is 
proposed as 

 
RL t( ) ! r

l
           (8) 

where 
 
RL t( )  is the residual life of the system predicted 

at time t, rL is the lifetime threshold.  
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3. PDM POLICY 

This section gives a PdM policy widely used in 
manufacturing/production industry and concretizes the 
USCs. The established PdM policy constitutes the base 
for further numerical analysis. 

This paper establishes a component-level PdM 
policy based on a stochastic linear degradation model. 
The key factors for the PdM policies are: 1) Objectives: 
minimizing the maintenance cost rate within a 
replacement cycle; 2) Maintenance policy: sequential 
maintenance; 3) maintenance effect: perfect PM and 
corrective maintenance (CM); 4) Degradation 
characteristics: stochastic liner degradation model; 5) 
maintenance constraints: none. The timing of the PdM 
policy is illustrated in Figure 1. 

the ith PM 

or CM

time axis

t T*(t)

 
Figure 1: Timing of the PdM policy. 

Based on the above factors, the maintenance cost 
rate within a replacement cycle estimated at time t in 
the PdM policy is 

 

r t( ) =
C

CR
t( ) + C

PR
t( )

T
O

t( )
          (9) 

where 
 
r t( )  is the maintenance cost rate within the 

replacement cycle estimated at time t, 
 
C
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cost within the replacement cycle estimated at time t, 
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In Eq. (9), 
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where CCR is the maintenance cost per CM, 
 
T t( )  is 

the PM schedule estimated at time t, 
 
R T t( ) t( )  is the 

system reliability at time 
 
T t( )  predicted based on its 

condition monitoring information up to time t. On the 
other hand, 

 
C
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where CPR is the maintenance cost per PM. In Eq.(9), 
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where 
 
R ! t( )  is the system reliability at time !  

predicted based on its condition monitoring information 
up to time t and  ! " t . At time t, to find the optimal 

 
T t( ) (denoted as 

 
T

!
t( ) ) that minimizes 

 
r t( ) , the 

estimation method for 
 
R ! t( )  must be clearly defined. 

This paper considers a single-unit system with one 
performance variable, characterizes the performance 
variable using the stochastic linear degradation model, 
and further calculates 

 
R ! t( ) . Examples for the single-

unit system with one performance variable modeled by 
the stochastic linear degradation model include rolling 
bearings [8], laser systems [9], thrust drillers [10], etc. 
The stochastic linear degradation model is [11]: 
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t( ) . In the operation process of the 

system, the most recent condition monitoring 
information arrives at each condition sampling point. 
Gebraeel etc. proposed a Bayes based method for 
updating the model parameters in Eq. (13) [11]. Based 
on the updated model parameters, 
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predicted as 
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where 
 
P A( )  means the probability of event A, 

 
L ! t( )  

is the system’s performance variable at time !  
predicted based on its condition monitoring information 
up to time t, CL is the critical level for the performance 
variable and the system is considered failed once its 
performance variable exceeds CL. ! "( )  is the 
cumulative distribution function of standard normal 
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distribution. 
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 are respectively the updated values 
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1
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1
 at time t. The details of the updating method 

of model parameters can be referred to [11]. 
Substituting Eqs. (10) ～ (12) and Eq. (14) into Eq.(9) 
gives: 
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Based on Eq. (16), 
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!
t( )  is given as: 
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By Eq. (17), there is a temporary 
 
T

!
t( )  at each 

condition monitoring moment, and consequently a USC 
is needed to stop updating and determine the final PM 
time. The updating step length based USC is clearly 
defined in Eq. (2). For reliability based USC defined in 
Eq. (4), the USC for the PdM policy can be more 
concretely written as: 
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The PdM policy is established based on the fact that 
the performance variable can directly reflect the 
system’s health state, and hence the condition based 
USC is 
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In addition, the residual life based USC can be 
concretized as 
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4. NUMERICAL INVESTIGATION 

This section conducts an extensive numerical 
investigation on the effect of the USCs on the 
effectiveness of the typical PdM policy given in Section 
III, and discusses the problem of USC optimization. 

Table 1: Model Parameters 

parameter 
 
µ

0
 

 
!

0
 

 
µ

1
 

 
!

1
 !  CL 

value 1 1 4 1 1/2/4 200 

The 1st step of the numerical investigation is data 
generation, and failure definition. The stochastic linear 

 
Figure 2: 3 Randomly selected degradation processes with 

 ! = 2 . 



Optimizing the Updating Stopping Condition Journal of Modern Mechanical Engineering and Technology, 2014, Vol. 1, No. 1      17 

degradation model is used to simulate the performance 
variables in the system degradation processes. The 
model parameters are defined in Table 1 without loss 
of generality. In addition, the CL is also defined in 
Table 1. Using the model parameters in Table 1, 100 
degradation processes are simulated. Figure 2 
illustrates 3 degradation processes randomly selected 
out of the simulated samples.  

The 2nd step of numerical investigation is to 
establish the PdM model in Eq.(17) and calculate 

 
T

!
t( )  for each simulated sample and at each condition 

monitoring point. Without loss of generality,   !t = 1 is 
used in this paper. To establish the PdM model, the 
maintenance cost rate 

 
CCR CPR  needs to be defined 

at first. Herein, two typical cases for 
  
CCR CPR = 2  and 

  
CCR CPR = 4  are considered.  

The 3rd step of numerical investigation is to 
determine the maintenance schedule for each sample 
based on different USCs and analyze the performance 
of each USC based on the performance of the PdM 
using the USC. The performance of the PdM can be 
defined as 

  

r
A
=

PPR ! n
PM

+ CPR ! n
CM

T
Oi

i=1

100

"

       (21) 

where 
 
r

A
 is the actual average maintenance cost rate 

for the simulated samples, 
 
n

PM
 is the actual number of 

samples receiving PM acts before failure, and 
 
n

CM
 is 

the actual number of samples which fail before 
receiving PM acts, 

 
T

Oi
 is the actual operation time for 

sample i. 
 
T

Oi
 equals the maintenance schedule if 

sample i receives a PM act, and equals its lifetime if 
sample i fails in the end.  

Figure 3 ～Figure 10 demonstrate the performance 
of the PdM policy using 4 USCs. Based on the results, 
the best performance of the PdM policy using 3 USCs 
for CCR/CPR=2 comes close to 0.02CPR, while the 
reliability based USC gives slightly worse results. 
Based on the results in Figure 3 ～Figure 10, the best 
performance of the PdM policy using a certain USC 
and a given noise level of degradation process may 
differ greatly from its suboptimal performance. For 
example, rA=0.020 CPR for the time-based USC for 
CCR/CPR=2 and n=3, and rA=0.033 CPR for the time-
based USC for CCR/CPR=2 and n=20. This verifies the 
importance of optimizing the USC for a PdM policy.  

In practice, the cross validation method can be 
adopted to obtain the optimal value for a given USC 
based on historical samples. Actually, these historical 
samples are not only a prerequisite for optimizing a 
USC, they are used to establish the model of 
degradation processes for a PdM policy as well.  

 
Figure 3: rA with respect to different n for time-based 
updating stopping condition for CCR/CPR=2. 

 

 
Figure 4: rA with respect to different n for time-based 
updating stopping condition for CCR/CPR=4. 

 

 
Figure 5: rA with respect to different reliability threshold for 
reliability-based updating stopping condition for CCR/CPR=2. 
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Figure 6: rA with respect to different reliability threshold for 
reliability-based updating stopping condition for CCR/CPR=4. 

 

 
Figure 7: rA with respect to different residual life threshold for 
condition-based updating stopping condition for CCR/CPR=2. 

 

 
Figure 8: rA with respect to different residual life threshold for 
condition-based updating stopping condition for CCR/CPR=4. 

 
Figure 9: rA with respect to different residual life threshold for 
residual life-based updating stopping condition for 
CCR/CPR=2. 

 

 
Figure 10: rA with respect to different residual life threshold 
for residual life-based updating stopping condition for 
CCR/CPR=4. 

5. CONCLUSION 

This paper reviews the common USCs, proposes a 
residual life based USC, and evaluates the influence of 
the USCs on the effectiveness of a PdM policy. The 
commonly used USCs are concretely defined in a PdM 
policy based on the stochastic linear degradation 
model. An extensive numerical investigation compares 
the performances of the PdM policy using different 
USCs. The investigation results verify the importance 
of optimizing the USC for a PdM policy. Investigating 
the effect of a USC on the effectivenesss of a system-
level PdM policy may be a valuable topic in the future.  
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