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Analysis of EXAFS Spectra of Crystalline Copper using Classical 
Anharmonic Correlated Einstein Model 

Tong Sy Tien* 

Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 
Abstract: In this work, the temperature dependence of extended X-ray absorption fine structure (EXAFS) of the 
crystalline copper structure was calculated and analyzed using the anharmonic correlated Einstein model and the 
classical statistical theory. The thermodynamic parameters of a system are derived from an anharmonic effective 
potential that has taken into account the influence of all nearest neighbors of absorbing and backscattering atoms in the 
crystal lattice with thermal vibrations, where the Morse potential is assumed to characterize the interactions between 
each pair of atoms and the function of anharmonic EXAFS spectra presented in terms of the cumulant expansion up to 
the fourth-order. Analytical expressions for the first four cumulants and their contribution to amplitude reduction and 
phase shift obtained in the simple form of the mean-square relative displacement or the correlated Einstein frequency. 
The numerical results for crystalline copper were in good agreement with those obtained by the other theoretical 
procedures and experiments at several temperatures. The analytical results show that this calculation model is useful to 
reduce measurement and data analysis of experimental EXAFS spectra. 
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1. INTRODUCTION 

The extended X-ray absorption fine structure 
(EXAFS) has been developed into a powerful 
technique and is widely used to determine many 
structural parameters and dynamic properties of 
materials [1-5]. In the case of harmonic oscillators, a 
reduction factor of the EXAFS amplitude is multiplied, 
which is so-called a Debye-Waller factor (DWF) and is 
arisen as a natural consequence of fluctuations in 
interatomic distances and are easily added by the 
average of 

  
e2ikR  over many paths [6,7]. However, the 

position of atoms is not stationary, and their interatomic 
distance always changes due to thermal vibrations [4-
6]. The sensitivity of EXAFS oscillations to these 
thermal vibrations was detected by Beni and Platzman 
(1976) [2] and discussed detail by Eisenberger and 
Brown (1979) [3]. They cause thermal disorder and 
anharmonic effects on crystal vibrations and will smear 
out the EXAFS oscillations [3,6]. Therefore, in the case 
of anharmonic oscillators, an account of DWF for 
displacement-displacement correlation function with the 
local disorder is especially crucial for achieving the 
correct EXAFS amplitudes, while an account of the 
anharmonicity is essential for a proper understanding 
of the EXAFS phase [7-8]. The sensitivity of EXAFS 
oscillations to anharmonic effects and its capability to 
give unique information about anharmonic interactions, 
which were reviewed by Tranquada and Ingalls (1983) 
[9] and Crozier et al. (1988) [10], are being effectively 
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applied to investigate the structure and dynamic 
parameters of disordered systems [11-16].  

In a solid exhibiting local dynamic disorder of the 
atomic positions of a single shell around a central atom 
described through the radial pair distribution-function 
(RDF) [3-6], and the cumulants of this function (or 
cumulants) were determined to be more stable and 
interpreted more naturally by Kubo (1962) [17]. The 
use of cumulants to investigate local disorder of the 
EXAFS spectra was introduced by Rehr (1979) [8,18] 
who showed that the DWF is generally complex and 
has a natural cumulant expansion in powers of the 
photoelectron wavenumber. The EXAFS function was 
described in detail via the cumulant expansion 
approach (ratio method) by Bunker (1983) [7] and 
exploited by Tranquada and Ingalls (1983) [9]. The 
ratio method is particularly appealing because it 
summarizes the relevant structural and dynamic 
information in a few parameters that are easily 
obtained from the experimental EXAFS spectra 
[9,10,19-22]. The amplitude and phase of the 
anharmonic EXAFS spectra are expanded as a series 
of cumulants of the interatomic distance distribution, 
which is effectively achieved in analyzing experimental 
EXAFS spectra [9-10,19]. The importance of including 
higher-order cumulants in the anharmonic EXAFS 
analysis has been recognized in many works [23-27].  

Many theoretical approaches have been used to 
calculate and evaluate the contribution of thermal 
vibrations to the anharmonic EXAFS spectra. For 
quantum approaches, several methods have been 
proposed such as the full lattice dynamic (FLD) 
approach, path-integral effective-potential (PIEP) 
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method, equation of motion (EM) method, path-integral 
Monte Carlo (PIMC) calculation, density functional 
theory (DFT) calculations, and anharmonic correlated 
Debye (ACD) model, which were described by 
Miyanaga and Fujikawa (1994b) [28], Yokoyama 
(1998,1999) [29,30], Poiarkova and Rehr (1999) [31], 
Beccara et al. (2003,2008) [32,33], Vila et al. 
(2007,2012) [34,35], Hung et al. (2010) [36], 
respectively. These quantum approaches took into 
account the quantum effects at low temperatures and 
the anharmonic effects at high temperatures. However, 
they still have a limitation in which the results of the 
EXAFS cumulants are not expressed in explicit forms. 
This limitation leads to the analysis of the anharmonic 
EXAFS spectra to determine thermodynamic 
parameters that are quite complicated because it 
needs to perform many computational steps with 
various parameters. For the classical approach, using a 
classical approximation based on the force constants of 
an effective potential was proposed by Stern et al. 
(1991) [37], where the parameters of the interatomic 
potential of the system were unknown. It can calculate 
the temperature dependence of EXAFS cumulants up 
to the fourth-order and obtain simple results. This 
classical approach works well at high temperatures and 
was used effectively for analyzing anharmonic EXAFS 
spectra of some crystals and metals at high 
temperatures [22,38-40]. 

Additionally, for two-atom systems, EXAFS 
cumulants can be expressed as a function of the force 
constant of a one-dimensional bare interaction potential 
[18,19,41], while for many-atom systems, EXAFS 
cumulants are often connected to the force constants 
of a one-dimensional effective pair potential by 
analytical expressions similar to those for two-atom 
systems [18,42]. However, the connection between the 
EXAFS cumulants and the thermodynamic parameters 
of many-atom systems remains a matter of great 
interest [8,18,42], especially regarding the meaning of 
effective potential [43,44]. The sensitivity of the EXAFS 
cumulants with the nature of the bonding potential of 
atoms was suggested by Rehr et al. (1995) [45]. Hung 
and Rehr (1997) [18] then introduced a calculated 
model for the anharmonic effective potential based on 
the correlated Einstein model [46] and the contribution 
of the anharmonic effects that take into account the 
interaction of absorbing and backscattering atoms with 
their nearest neighbors and it called the anharmonic 
correlated Einstein (ACE) model. 

Recently, for the ACE model using the quantum 
statistical theory (henceforth cited as the QACE 
model), it was successfully applied to calculate and 

evaluate the EXAFS spectra for various types of crystal 
lattices by Hung et al. (2017,2019) [13-14,15], 
Fornasini et al. (2017) [16], Duc et al. (2019) [47], and 
Vuong et al. (2019) [48]. For the ACE model [18] using 
the classical statistical theory [37] (henceforth cited as 
the CACE model), it was efficiently applied to calculate 
and analyze the EXAFS spectra for crystalline zinc (Zn) 
& cadmium (Cd) by Hung et al. (2014) [43] and 
crystalline germanium (Ge) by Tien et al. (2019) [44]. 
However, the QACE model only extends the EXAFS 
cumulants up to the third-order, and the CACE model 
only calculates for the hexagonal close-packed crystals 
and diamond crystals, while the experimental EXAFS 
spectra were analyzed for crystalline copper using the 
cumulant expansion approach up to the fourth-order 
[38,49]. Therefore, the application and development of 
a CACE model to efficiently calculate and analyze the 
anharmonic EXAFS spectra of Cu will be a necessary 
addition to the analysis of EXAFS technique. 

The purpose of this work is to develop a more 
suitable calculation-model for analysis of the 
anharmonic EXAFS spectra of the first coordination 
shell of crystalline copper(Cu) based on the CACE 
model. In this work, the analytical expressions for the 
anharmonic effective potential and local force 
constants are derived from the structure of a small 
cluster of immediate neighboring atoms around the 
absorbing and backscattering atoms, where the 
anharmonic effective potential is expanded up to the 
fourth-order instead of lower orders, and the Morse 
potential characterizes the interaction between a pair of 
atoms. The dependence of the first four EXAFS 
cumulants and the EXAFS amplitude and phase is 
calculated and described in the simple form of the 
mean-square relative displacement or the correlated 
Einstein frequency. Our numerical results for Cu are 
found to be in good agreement with those obtained by 
the QACE model [14], the ACD model [36], and 
experiments [14,38,49] at various temperatures. From 
the analysis of the comparison results, we discuss 
advances in studies on evaluating the role and 
meaning of the EXAFS cumulants in the analysis of the 
temperature dependence of the EXAFS amplitude and 
phase. 

This article is organized as follows. The theoretical 
model and basic formulae of the EXAFS oscillation 
function are introduced in Sec. 2. Sec. 3 calculates the 
anharmonic effective potential and the first four 
cumulants of EXAFS spectra of face-centered cubic 
crystals are calculated on the basis of the CACE 
model. The numerical results for Cu compared with 
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those other theoretical procedures and experiments are 
discussed in Sec. 4. Sec. 5 concludes on the present 
investigation.  

2. BASIC FORMULAE OF THE EXAFS FUNCTION 

The thermal average of the EXAFS oscillation 
function of a single coordination shell has the form 
[6,7,19,20]: 

  
! k( ) = A k( )sin"(k) ,           (1) 

where 
 
A k( )  and   !(k)  are the EXAFS amplitude and 

phase, respectively, and  k  is the photoelectron 
wavenumber. 

 For the distribution of identical atoms and including 
non-Gaussian disorder, the K-edge EXAFS oscillation 
is described within the framework of single-scattering 
and plane-wave approximations by [7,9,10] 
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where !  is the electron mean free path,  N  is the 
coordination number, 

 
F k( )  is the atomic 

backscattering amplitude, 
 
! k( )  is the net phase shift, 

the angular brackets  are the thermal average, 

  S0
2(k)  is an amplitude reduction factor due to the 

many-body effects, and  r  is the instantaneous 
distance between the absorber atom and one 
neighboring atom. 

The temperature dependence of the normalized K-
edge EXAFS oscillations   k

2!(k)  of Cu is shown in 

Figure 1. It can be seen that the amplitude attenuation 
and phase shift to the right as the temperature T 
increases, which indicates that the anharmonic effects 
caused by thermal vibrations significantly influence the 
EXAFS oscillations.  

The cumulant expansion approach in powers of  k  
in the form of a Taylor series is often used [7,8,10]: 
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where the coefficients  !
n( )  are cumulants,   r0  is the 

equilibrium distance between the absorbing and 
backscattering atoms, the even-order cumulants 
contribute primarily to the amplitude, and the odd-order 
cumulants contribute primarily to the phase of the 
anharmonic EXAFS spectra. 

The analysis of the temperature dependence of the 
EXAFS spectra involves the cumulants that are 
expressed in terms of the power moments of the radial 
pair distribution-function (RDF). The first four EXAFS 
cumulants (with respect to the mean) are given by 
[8,10,19,50] 

  
! 1( ) = r " r0 ,            (4) 

  
! 2( ) "! 2 = r # R( )2

,            (5) 

  
! 3( ) = r " R( )3

,            (6) 

  
! 4( ) = r " R( )4

"3 ! 2( )
2
,          (7) 

 

Figure 1: The normalized K-edge EXAFS oscillations   k
2!(k)  of Cu at 300 K (dotted blue line) and 500 K (solid red line) [49]. 
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where the second cumulant  ! 2  is the parallel mean 
square relative displacement (MSRD) of the effective 
path length associated with a given multiple-scattering 
(MS) path, and the average distance between central 

and backscattering atom is 
  
R = r =

1
N

!(T ,r)r dr
0

"

#  

with   !(T ,r)  is true RDF [19]. 

Using the cumulant expansion approach in Eq. (3) 
and expanding the asymmetric terms in the brackets of 
Eq. (2) in a Taylor series about  R  and rewrites the 
thermal average in terms of cumulants [19,51], if the 
small-term yields from the mean free path (which 
implies a complex k) are neglected and approximated 
to the fourth cumulant, the result can be obtained as  
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Replacing Eq. (8) into Eq. (2), we obtain the 
formalism of the K-edge EXAFS function based on the 
cumulant expansion, including the anharmonic effects 
as 
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Thus, anharmonicity in the potential yields 
additional terms in the amplitude and phase of the 
anharmonic EXAFS spectra [3,5,8], which if ignored 
can lead to non-negligible errors in the structural 
parameters [5-10,18].  

Inferring from Eq. (9), the temperature T and 
wavenumber k dependence of the 

  
A k,T( )  and phase 

  
! k,T( )  is expressed as 
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Assuming the quantities 
  
F k( ) , ! k( ) , S0

2 k( ) , and 
 
! k( )  

to be the same at temperatures   T1  and   T2  [19,22,52-

53], we deduce the logarithm of the amplitude ratio 

  
M k,T1,T2( ) = ln A k,T2( ) A k,T1( )!

"
#
$  and the linear phase 

difference 
  
!" k,T1,T2( ) =" k,T2( )#" k,T1( )  between 

temperatures   T2  and   T1  from Eqs. (10) and (11) as 
follows: 
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Here, the term 
  
!2 R(T2 )! R(T1)"# $% &(k)+ ln R(T2 ) / R(T1)"# $%{ }  

is neglected in Eq. (12) because it is very small 
compared to the other terms in this equation, while the 
calculations of Eq. (13) deduced from Eq. (11) can use 
approximation 

   
1/ R T( ) ! 1/ r0  assuming    !

1( ) ! r0  and 

  
R T( ) = r0 +!

1( )  are derived from Eq. (3). 

Thus, we can analyze anharmonic EXAFS spectra 
based on the temperature dependence of the first four 
cumulants to determine many structural parameters 
and dynamic properties of materials. 

3. MODEL OF CALCULATING THE EXAFS 
CUMULANTS 

3.1. Anharmonic Effective Potential in the ACE 
Model 

To determine the thermodynamic parameters of a 
system, it is necessary to specify its anharmonic 
effective potential and force constants [12,18,43,44]. 
One considers a monatomic system with an 
anharmonic effective potential (ignored the constant 
contribution) is extended up to the fourth-order: 

  
Veff (x) = 1

2
k0x2 ! k3x

3 + k4x4 ,         (14) 

where   x = r ! r0  is the deviation of the interatomic 

distance from the potential minimum position,   k0  is the 
effective force constant, k3 and k4 are local force 
constants giving asymmetry of potential due to the 
inclusion of anharmonicity. 

The Morse potential is assumed to describe the 
interatomic interaction model for the potential energy of 
a diatomic molecule [54], which is given in terms of the 
function by 
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V (x) = D e!2"x ! 2e!"x( ) ,          (15) 

where x is the same previously defined value, !  
describes the width of the potential, and D is the 
dissociation energy.  

Applying the Morse potential to calculate the 
interaction energy between each pair of atoms in cubic 
metals was proposed by Girifalco and Weizer (1959) 
[55]. In the present study, we expand the Morse 
potential to the fourth-order: 

  
V (x) ! "D+D# 2x2 "D# 3x3 +

7
12

D# 4x4 .       (16) 

In the relative vibrations of absorbing (A) and 
backscattering (B) atoms, including the effect of 
correlation and taking into account only the nearest-
neighbor interactions, the anharmonic effective 
potential in the ACE model [18] is given by 
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where 
  
µ = M A M B / M A + M B( )  is the reduced mass of 

the absorber and backscatterer with masses MA and 
MB, respectively,   R̂  is a unit vector, the sum i is the 
over absorbers ( i = A ) and backscatterers ( i = B ), and 
the sum j is over the nearest neighbors.  

As can be seen on the right side of Eq. (17), the first 
term on the right concerns only the pair interaction 
potential of the absorbing and backscattering atoms 
and the second one describes the contribution of their 
nearest-neighbor atoms to the pair interaction potential 
and depends on the crystal structure type. 

 
Figure 2: Model of the crystalline copper. 

The model of the FCC structure of Cu is illustrated 
in Figure 2. Applying Eq. (17) to this structure, the 
anharmonic effective potential is written as 
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Using the Morse potential in Eq. (16) to calculate 
the anharmonic effective potential according to Eq. (18) 
and ignoring the overall constant, we obtain the result 
as 

  
Veff (x) = 5

2
D! 2x2 "

5
4

D! 3x3 +
133
192
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Comparing Eq. (14) with Eq. (19), we deduce the 
local force constants   k0 , k3, and k4 as follows: 

  
k0 = 5D! 2 , k3 =

5
4
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The thermal vibration of atoms is characterized by 
the correlated Einstein frequency  !E  and temperature 

 !E , which are calculated from the effective force 

constant   k0  in the following forms: 

   
!E =

keff

µ
=

14D"2

3m
, #E =

!!E
kB

,        (21) 

where kB is the Boltzmann constant,  !  is the reduced 
Planck constant, and the masses of all atoms in the 
monatomic crystals are the same; that is, the mass of 
the atoms is   M1 = M2 = m , so the reduced mass is 

  µ = m / 2 . 

Consequently, the correlated Einstein frequency 

 !E  and temperature  !E , and the force constants 

  k0 ,k3 , and   k4  are expressed in terms of the Morse 
potential parameters. 

3.2. Temperature Dependence of EXAFS Cumulants 
within a Classical Statistical Theory 

Using the effective anharmonic potential in Eq. (14) 
in the classical statistical limit and assuming that 
anharmonicity can be treated as a small perturbation, 
we determine the temperature dependence of the 
moments about the mean 

 
x  by evaluating the 

thermal average in the third-order approximation [37]: 
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To obtain the temperature dependence of the first 
four EXAFS cumulants from Eqs. (4)–(7), we use Eq. 
(21) to calculate the moments 

 
xn  (n = 1, 2, 3, and 4) 

according to Eqs. (22), the analytical expressions are 
obtained in the lowest-orders as 
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The truncation of the series in Eq. (22) serves as a 
convergence cutoff while including enough terms to 
accurately obtain the second lowest-order expressions 
for the moments. Because   kBT / D <<1 , the respective 
expressions are obtained from Eqs. (23)–(26) in the 
lowest order as 
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Thus, as can be seen from Eqs. (27)–(30), the 
temperature dependence of the cumulants  !

1( )  and 

 ! 2 ,  !
3( ) , and  !

4( )  is proportional to T, T2, and T3, 
respectively. These results are similar to those 
obtained using the first-order thermodynamic 
perturbation theory [18] and the anharmonic correlated 
Debye model [36] at high temperatures. Moreover, the 
analytical expressions the first four EXAFS cumulants 
have been presented in the simple form of the 
cumulant  ! 2  or MSRD. 

4. NUMERICAL RESULTS AND DISCUSSION 

To discuss the development and effectiveness of 
the CACE model for the analysis of EXAFS spectra in 
this work, we apply the formulae in Sec. 2 and the 
analytical expressions in Sec. 3 to the numerical 
calculations for Cu. Firstly, we calculate the 
temperature dependence of the first four EXAFS 
cumulants in the range from 0 K to 700 K. Our results 
are compared with those obtained using the QACE 
model [14], and the ACD model [36] based on the 
many-body perturbation approach and dispersion effect 
proposed by Hung et al. (2010) [36]. Our results are 
also compared with the experimental values obtained 
via the EXAFS spectrometer using the determining 
anharmonic pair potential parameters to the classical 
approach performed by Pirog et al. (2002) [38] at the 
Synchrotron Radiation Siberian Center (SSRC), 
Russia, from the EXAFS measurements using the best-
fitting to ratio method obtained by Fornasini et al. 
(2004) [49] at the Beamline BM08, European 
Synchrotron Radiation Facility (ESRF), France, and 
from the EXAFS data measured at the Beamline BL8, 
Synchrotron Light Research Institute (SLRI), Thailand 
by Hung et al. (2017) [14]. In these comparisons, the 
results calculated using the QACE model [14] and the 
ACD model [36] are in the range from 0 K to 700 K. 
The experimental values are at 300 K, 400 K, and 500 
K [14], at 6 different temperatures between 293 K and 
573 K [38], and at 19 different temperatures between 4 
K and 500 K [49], respectively. Then, we analyze the 
logarithm of amplitude ratio and the phase difference of 
the anharmonic EXAFS spectra at 300 K and 500K in 
the wavenumber range from 0 Å-1 to 20 Å-1. Our results 
are compared with those obtained using the filtered 
EXAFS signal obtained using the ratio method 
suggested by Fornasini et al. (2004) [49] in the 
wavenumber range from approximately 3 Å-1 to 14 Å-1. 
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Lastly, from these comparisons, we evaluate and 
comment on the results calculated via the CACE model 
in this work.  

The thermodynamic parameters   k0 , k3, k4 ,!E , and 

 !E  for Cu are calculated by Eqs. (20) and (21) and 
given in Table 1, where the Morse potential parameters 
  D = 0.3429  eV and  ! =1.3588  Å-1 derived from 
experimental values of the energy of vaporization. Our 
results are compared with those obtained using the 
QACE model [14] and other experiments [38,49]. The 
correlated Einstein frequency  !E  and temperature  !E  
in Refs. [14, 38] are deduced from the effective force 
constant   k0 , and the correlated Einstein temperature 

 !E  in Ref. [49] is obtained using the correlated Debye 

temperature   !D = 2!E  [18,36]. As can be seen from 
Table 1, the comparisons show no significant 
difference, especially for the effective force constant 

  k0 , correlated Einstein frequency  !E , and temperature 

 !E .  

Figure 3 shows the temperature dependence of (a) 
the first cumulant   !

(1) (T )  and (b) the second cumulant 

  !
2(T )  of Cu is calculated using Eqs. (27) and (28), 

respectively. At temperatures above   !E " 237 K, our 
results calculated using the CACE model indicate good 
agreement with those obtained using the QACE model 
[14] and the ACD model [36], and with the experimental 
values of Refs. [14, 38, 49] (only for the second 
cumulant) as seen in Figure 3, in which the 
experimental values of Ref. [38] for the first cumulant 
are derived from the experimental interaction-distance 

 
R T( )  according to Eq. (4). At 300 K, the results 
obtained using the CACE model, the QACE model the 
ACD model, are   !

1( ) ! 8.4"10#3 Å and   !
2 ! 8.3"10#3 Å2, 

  !
1( ) ! 8.8"10#3 Å and   !

2 ! 8.7"10#3 Å2 [14], and 

  !
1( ) ! 8.4"10#3 Å and   !

2 ! 8.6"10#3 Å2 [36], respectively, 

while the experimental values are  !
1( ) " 8.7#10$3 Å and 

 !
2 " 8.4#10$3 Å2 [14], and  !

2 " 8.4#10$3 Å2 [49] at 300 

K, and  !
1( ) " 8.9#10$3 Å and  !

2 " 6.8#10$3 Å2 at 293 K 
[38].  

Table 1: The Thermodynamic Parameters k0 , k3, k4 ,!E , and !E  of Cu Obtained using the CACE Model, the QACE 
Model [14] and other Experiments [38,49] 

Method   k0 (eVÅ-2)   k3 (eVÅ-3)   k4  (eVÅ-4)  !E  ( ! 1013Hz)  !E (K) 

CACE modela 3.17 1.08 0.83 3.10 236.8 

QACE modelb 3.17 1.08  3.10 236.8 

Experimentc 3.20 1.30 1.40 3.12 238.1 

Experimentd 3.20 1.37 1.46 3.12 231.9 
aThis work. 
bReference [14]. 
cReference [38]. 
dReference [49]. 

 
Figure 3: Temperature dependence of the first (a) and second (b) cumulants of Cu obtained using the CACE model (solid blue 
lines), the QACE [14] (dashed-dotted green lines), the ACD model [36] (dotted red lines), and other experiments from Refs. [14] 
(full cyan diamonds), [38] (full magenta squares), and [49] (full yellow circles). 
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Figure 4 shows the temperature dependence of (a) 
the third cumulant   !

3( )(T )  and (b) the fourth cumulant 

  !
4( )(T )  of Cu is calculated using Eqs. (29) and (30), 

respectively. Our results calculated using the CACE 
model indicate good agreement with those obtained 
using the ACD model [36], and the QACE model [14] 
(only for the third cumulant), and with the experimental 
values of Refs. [14, 38, 49] (only for the third cumulant) 
as seen in Figure 4, especially at temperatures not too 
low (the applicable limits for the third and fourth 
cumulants in the low-temperature range have been 
discussed in detail in Ref. [44]). At 300 K, the results 
obtained using the CACE model, the QACE model, 
and the ACD model are   !

3( ) ! 1.4"10#4 Å3
 and 

  !
4( ) ! 3.4"10#6 Å4,   !

3( ) ! 1.4"10#4 Å3
 and 

  !
4( ) ! 4.3"10#6 Å4 [14],   !

3( ) ! 1.4"10#4 Å3 and 

  !
4( ) ! 3.2"10#6 Å4 [36], respectively, while the 

experimental values are  !
3( ) " 1.3#10$4 Å3 [14], and 

 !
3( ) " 1.5#10$4 Å3 and  !

4( ) " 6.3#10$6 Å4 [49] at 300 K, 

and  !
3( ) " 1.4#10$4 Å3 and  !

4( ) " 3.6#10$6 Å4 at 293 K 
[38]. As can be seen from Refs. [14, 36], our results for 
first three cumulants are the same as the 
corresponding results calculated by the QACE model 
[14] and ACD model [36] in the high-temperature limit, 
while our result for the fourth cumulant is slightly 
greater than the result calculated by the ACD model 
[36] (the QACE model [14] can only calculate 
cumulants up to the third-order). Here, the local force 
constants in the results of Refs. [14, 36] are replaced 
by terms of the Morse potential parameters from Eq. 
(20). 

Thus, the results of the temperature dependence of 
the first four EXAFS cumulants calculated using the 
present CACE model satisfied all of their fundamental 

properties compared to other theoretical models and 
experiments at temperatures above the correlated 
Einstein temperature, which is explained because 
anharmonicity in EXAFS spectra appears from about 
room temperature. These results described the 
influence of anharmonic effects on the classical limit via 
thermal vibration-contributions at high temperatures. 

Figure 5 shows the wavenumber dependence of (a) 
logarithm of the amplitude ratio 

  
M k( ) = ln A k,500 K( ) A k,300 K( )!

"
#
$  and (b) the phase 

difference 
  
!" k( ) =" k,500 K( )#" k,300 K( )  of Cu is 

calculated using Eqs. (12) and (13), respectively. It can 
be seen that our results calculated using the CACE 
model indicate good agreement with those obtained via 
the ratio method [49] in the wavenumber range from 
approximately 3 Å-1 to 14 Å-1. At   k =14  Å-1 and our 
results are    M ! !1.86  and   !" ! #0.89  rad, while the 
results obtained using the ratio method are    M ! !1.84  
and   !" ! #1.06  rad [49]. The logarithm of the 
amplitude ratio 

 
M k( ) , including the contributions of the 

terms that contain the second cumulant (henceforth 
denoted as   M1(k) ) and fourth cumulant (henceforth 

denoted as   M2(k) ) as seen via Eq. (12). As can be 
seen from Figure 5a, our calculated result 
demonstrates that 

  
M1 k( )  is the major contributor to the 

value of 
 
M k( ) , but the contribution of the 

  
M2 k( )  is 

also significant and reduces the result of 
 
M k( ) , 

especially at large wavenumbers (high energy 
photoelectrons). Our result of ratio 

  
M2 k( ) M k( )  

obtained is about  !8.01 %  at   k =10 Å-1, and  !42.21 %  

at   k = 20 Å-1. The phase difference 
 
!" k( ) , including 

 
Figure 4: Temperature dependence of the third (a) and fourth (b) cumulants of Cu obtained using the CACE model (solid blue 
lines), the QACE [14] (dashed-dotted green line), the ACD model [36] (dotted red lines), and other experiments from Refs. [14] 
(full cyan diamonds), [38] (full magenta squares), and [49] (full yellow circles). 
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the contributions of the terms that contain the first 
cumulant (henceforth denoted as   !"1(k) ), the second 

cumulant (henceforth denoted as   !"2(k) ), and the 

third cumulant (henceforth denoted as   !"3(k) ) as 
seen via Eq. (13). As can be seen from Figure 5b, our 
calculated result demonstrates that the contributions of 

  
!"1 k( )  and 

  
!"2 k( )  to the result of 

 
!" k( )  are 

significant, but the contribution of 
  
!"1 k( )  is opposite 

and only slightly larger than that of   !"2(k) , which 

makes them eliminate each other and causes 
  
!"3 k( )  

to have the most influence on the result of 
 
!" k( ) , 

especially at large wavenumbers. Our result of ratio 

  
!"3 k( ) !" k( )  obtained is about  103.08 % at 10=k Å-

1 and  100.75 %  at   k =10 Å-1. 

Consequently, at large wavenumbers, the 
contribution of   M2(k)  cannot be ignored in the 
calculation of the logarithm of the amplitude ratio 

  M (k) , and the approximation 
  
!" k( ) # !"3 k( )  can be 

satisfactory with negligible errors in the calculation of 
the phase difference 

 
!" k( ) , which means that the 

term containing the fourth cumulant in Eq. (12) needs 
to be taken into account, and the terms containing the 
first and second cumulants can be ignored in Eq. (13) 
in analyzing the anharmonic EXAFS spectra. 

5. CONCLUSIONS 

 The advantage of the present CACE model 
compared to other theoretical procedures is that the 
results of the first four EXAFS cumulants are not only 

expressed in explicit and simple forms of he 
temperature T or MSRD but also satisfy all of their 
fundamental properties in temperature dependence. 
These results are useful not only for numerical 
calculations and predicting results of other theoretical 
procedures but also for reducing measurements and 
analyzing the experimental EXAFS spectra. 

The analytical results of the contributions of the 
EXAFS cumulants to the anharmonic EXAFS 
oscillation discovered that the third cumulant plays an 
important role and has the greatest influence on the 
amplitude reduction, while the fourth cumulant plays an 
indispensable role and significantly influences on the 
phase shift, especially at large wavenumbers. This 
evaluation result is very useful for analyzing the 
experimental data of the anharmonic EXAFS spectra.  

The present method can be applied to the analysis 
of the anharmonic EXAFS spectra starting from about 
the correlated Einstein temperature to just before the 
melting point when the structure of diamond crystals 
remains stable. In spite of limitations in the application 
at low temperatures, the present CACE model is still 
suited to analyze the anharmonic effects in 
experimental EXAFS spectra, because anharmonicity 
in EXAFS spectra appears from about room 
temperature. 

The good agreement of our numerical results for Cu 
with those obtained using the QACE model, ACD 
model, and other experiments at various temperatures 
shows the effectiveness of the present CACE model for 
calculating and analyzing the anharmonic EXAFS 
spectra.  

 
Figure 5: Wavenumber dependence of logarithm of the amplitude ratio (a) and the phase difference (b) of Cu at 500 K and 300 
K obtained using the ratio method [49] (red plus signs) and the CACE model in the cases: calculating all of the terms in Eq. (12) 
or Eq. (13) (solid blue lines) and calculating only the term that contains the second cumulant in Eq. (12) (dashed magenta lines), 
the fourth cumulant in Eq. (12) (dotted green line), the first cumulant in Eq. (13) (dashed-dotted green line), the second cumulant 
in Eq. (13) (dashed cyan lines), and the third cumulant in Eq. (13) (dotted magenta line). 
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