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Abstract: Materials atomic structure, ground-state and physical properties as well as their chemical reactivity mainly are 
determined by electronic structure. When first-principles methods of studying the electronic structure acquire good 
predictive power, the best approach would be to design new functional materials theoretically and then check 
experimentally only most perspective ones. In the paper, the semi-classical model of multi-electron atom is constructed, 
which makes it possible to calculate analytically (in special functions) the electronic structure of atomic particles 
themselves and materials as their associated systems. Expected relative accuracy makes a few percent, what is quite 
acceptable for materials science purposes. 
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1. INTRODUCTION 

Electronic structure, i.e. electron energy spectrum 
plus electron density distribution in space, plays a 
fundamental role in determining the materials cohesion 
and equilibrium atomic structure, as well as their phase 
transitions, physical properties, and chemical reactivity 
[1]. 

The microscopic view of materials as composed of 
interacting atoms, which in turn are the bounded 
systems of nuclei and electrons, aiming to explain all 
the properties of materials purely theoretically – based 
only on quantum mechanics without any adjustable 
semiempirical parameters – is called as first-principles 
approach. Using the first-principles methods acquired 
good predictive power to design new functional 
materials can be preferable compared to their 
experimental search. Point is that there is suggested a 
huge number of materials potentially useful in various 
technologies and industries and then their laboratory 
preparation and checking whether possess the desired 
properties are too expensive and time consuming. 
Therefore, a better approach would be to design new 
materials theoretically, in a “virtual laboratory”, and 
then investigate experimentally only most perspective 
ones. 

As is known, in materials only a part of electrons 
called valence electrons are actively involved in the 
formation of interatomic chemical bonds, whereas the 
rest of electrons called core electrons together with 
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nuclei remain in states almost indistinguishable from 
their states in corresponding isolated atoms. Therefore, 
constituent atoms largely retain their individuality within 
the material and its treatment as a structure of atom-
like systems seems to be quite acceptable. 

This fact explains the successful practice of 
theoretical description of many materials by the LCAO 
(Linear-Combination-of-Atomic-Orbitals) method – see 
e.g. [2] (for the origins see [3, 4] as well), which is 
looking for the electronic subsystem wave function as a 
linear combination of atomic-like orbitals. Both the 
accuracy and range of applicability of the LCAO 
method are greatly dependent of effective expression 
of the set of constituent atoms electronic orbitals used 
in trail. Since the standard first-principle quantum-
chemical methods give AOs in numerical form, the 
matrix elements of the corresponding secular equation 
determining the material electronic structure in the 
LCAO approach usually have to be found by numerical 
integration as well. 

In the present work, there is developed the semi-
classical model of multi-electron atom leading to the 
analytical expressions of AOs through special 
functions. Using them, again in special functions one 
can calculate the electronic structure of atomic particles 
themselves and their associations in form of materials. 

2. RELATIVISTIC GENERALIZATION OF BOHR 
SEMI-CLASSICAL MODEL 

Since electrons in low-lying orbits in heavy atoms 
move with relativistic velocities, the non-relativistic 
analysis is insufficient to estimate the minimum radius 
of the electron orbits: it is necessary to involve 
relativistic mechanics. For this reason, below we give 
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relativistic generalization of the semi-classical non-
relativistic Bohr model for hydrogen-like atoms. 

Considering the nucleus as a point particle of infinite 
mass and, consequently, being in the rest and having 
the positive charge of +eZ (e is the elementary electric 
charge, and Z is the nucleus charge number), we 
estimate the allowed semi-classical values of the radius 
! of stationary circular orbit of relativistic electron (with 
the negative charge of -e) bounded by electrical 
interaction with nucleus located in the center of the 
orbit. Let " be the magnitude of the velocity of the 
electron in its orbit. The assumption of stationary 
motion means its constancy: "=const. Since the 
centripetal acceleration of such electron is caused by 
the nucleus Coulomb attractive force, the relativistic 
equation of motion is obtained in the following form (in 
Gauss units): 

          (1) 

where c denotes the light speed and m is the electron 
rest mass. 

In the spirit of the “old quantum mechanics”, we 
require that in the relativistic hydrogen-like atom the 
allowed electron orbit length should be a multiple 
integer of the de Broglie wavelength of the moving in 
this orbit electron: 

           (2) 

Here ℏ denotes the Planck constant and is introduced 
the quantum number # taking natural values: 

           (3) 

Two equations, (1) and (2), make up the system of 
equations for two unknowns ! and ". Excluding ! from 
them, we obtain quadratic equation defining ": 

          (4) 

Having a physical meaning, i.e. positive, solution "n 
is: 

          (5) 

Here we introduced the electron orbit parameter 

           (6) 

determined by so-called fine-structure constant: 

           (7) 

The value of $n can serve as a criterion for the 
relativism of the electron motion in its orbit. As 
expected, in the non-relativistic limit, which 
corresponds to the condition $n   ≪   1, the solution (5) 
gives velocity of the electron in Bohr model orbit: 

           (8) 

where  is the electron velocity in 
the hydrogen atom first Bohr orbit. This indeed is a 
non-relativistic velocity,  and 

then explains success of the non-relativistic Bohr 
model. 

Now from equations (2) and (5) it is easy to find the 
radii !n of allowed electron orbits: 

          (9) 

Here  denotes so-called Bohr 
radius, the hydrogen atom first Bohr orbit radius. From 
formula (9), in the non-relativistic limit  we have 

 as one would expect. 

And finally, we set the semi-classical electron 
energy levels En in relativistic hydrogen-like atom: 

        (10) 

or 

      (11) 

In the non-relativistic limit, , it is permissible 
to decompose the right-hand side of this relation into 
series in powers of  and retain only members of zero 
and first orders: 

        (12) 
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These two terms exactly coincide, respectively, with 
the rest energy of the electron and the non-relativistic 
energy level of the electron-state with the number of # 
in the hydrogen-like atom. However, the following 
terms of the decomposition turn out to be inaccurate: 
they do not coincide precisely with the quasi-relativistic 
corrections to the non-relativistic eigenvalues according 
to the Dirac relativistic wave equation for hydrogen-like 
atom. This is explained by the impossibility of taking 
into account in the semi-classical approximation the 
electron’s intrinsic mechanical momentum – spin. 

At given Z, the minimum radius corresponds to the 
first orbit with # =1. On the other hand, the radius of the 
orbit decreases with increasing charge number Z. If this 
number is so large that , then 
the solution of the Dirac wave equation with the 
Coulomb potential does not satisfy the physical 
boundary condition at the center of the field: !→0 [5]. 
Consequently, the values  and, 
accordingly,  are extremely possible values 
from the point of view of the atom stability. Although, in 
real atoms, the nuclei themselves become unstable at 
much lower Z and . Finally, we get the desired 
estimate of the minimum radius of the relativistic 

electron orbit in atom: . 

Our relativistic model of single-electron atom seems 
to be the most direct generalization of the well-known 
non-relativistic Bohr model of hydrogen atom [6-8]. 

3. KEY ASSUMPTIONS OF SEMI-CLASSICAL 
MODEL OF MULTI-ELECTRON ATOM 

3.1. Stationary State 

Atomic nuclei are the bounded systems of nucleons 
– protons and neutrons. The presence of at least one 
proton is obligatory for a nucleus to have a non-zero 
electric charge. As the nucleon mass in ~ 2000 times 
exceeds the electron mass, the mass of an atomic 
electron is almost negligible compared to the mass of 
atomic core, i.e. the system of nucleus and the rest of 
electrons. It is clear that such approximation “works” 
better for heavier atoms. Assuming the nucleus mass 
to be infinite, atom can be imagined as a system of a 
positively charged nucleus fixed in the rest and 
negatively charged electrons moving around in closed 
orbits. Each atomic electron is affected by 
approximately stationary SCF (Self-Consistent-Field) 
consisted from stationary electric field of the nucleus 
and time-averaged superposition of electric fields of 
atomic core’s moving electrons. 

As single-electron wave equation with stationary 
binding potential leads to discrete energy eigenvalues, 
by the introducing atomic SCF conception multi-
electron atom problem is reduced to the determination 
of its electronic structure – single-electron AOs and 
corresponding electron energy levels. 

Initially, a relativistic correction to a non-relativistic 
atomic electron level appears only in the second order 
with respect to the  ratio. According to the 
perturbation theory, the relativistic correction of order of 

 leads to so-called fine-structure of the electronic 
energy spectrum (see e.g. [9]). In parallel, this 
correction accounts the first-order electron-spin effects. 
As for the correction of order of , it takes into 

account the electron radiation, what is incompatible 
with its stationary motion. Thus, it makes no sense to 
take into account relativistic corrections of orders 
higher than 2. Note, the second-order correction to the 
energy corresponds to the first-order correction to the 
wave function. And since there are no first-order 
relativistic corrections, any relativistic corrections to the 
wave function should be neglected as well. 

3.2. Spherical Symmetry 

According to modern concepts, electrons are truly 
point-like particles. Can one consider the nuclei as 
material points too? If so, the nucleus fixed in a point 
should act as the spherical symmetry center of the 
intra-atomic SCF. To find the answer to the question 
posed, below we evaluate the atomic nucleus 
maximum radius to compare it with minimum radius of 
the relativistic electron orbit. 

Due to the almost constant density of nuclear 
matter, the radius of the nucleus was found [10] to be 
approximately proportional to the cubic root of the 
atomic number &, the sum of numbers of protons Z  and 
neutrons in the nucleus:  with the averaged 
value of the proportionality coefficient 

. Note that here R is the root-mean-
square charge radius of the nucleus, not a geometric 
characteristic. For the most stable nuclei, the ratio of 
numbers of neutrons and protons is estimated as 

. In this way, we get the equation: 
. The integer part of its solution at 

 gives estimation for the maximum atomic 
number: . Then . It 
turns out that the ratio of the maximum possible 
nucleus radius to the minimum electron orbit radius in 
atoms is much less than . 

Therefore, even for an extremely heavy nucleus its 
charge radius is significantly smaller compared with the 
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characteristic distance to electron in lowest-lying orbit. 
For the overwhelming majority of electron-states in 
atoms with stable nuclei, similar conditions are fulfilled 
in much better. 

Thus, atomic nuclei can be assumed to be point 
particles. The nucleus representation as a fixed point 
electric charge means that the intra-atomic electric 
SCF is of spherical symmetry with the center at 
nucleus. The contribution from the point nucleus 
Coulomb-like field certainly satisfies the spherical 
symmetry condition. However, spherical symmetry is 
not obvious for electronic contributions. The fact is that 
the AOs themselves, which are found by solving the 
wave equation with radial potential, are not spherically 
symmetric – in addition to the radial factor they also 
contain the angular factor. Therefore, to achieve self-
consistency, it is necessary that when calculating the 
atomic SCF the partial electron densities be averaged 
over directions. 

3.3. Semi-Classical Approximation 

Atomic absorption and emission spectra 
theoretically calculated assuming atomic electric field to 
be stationary and spherically symmetric are in 
agreement with all the available experimental data. As 
for the theoretical approaches to the problem of 
electronic structure of atoms and materials, among 
them most fruitful are various variants of the semi-
classical approximation such as Bohr and Thomas–
Fermi type models and DFT (Density-Functional-
Theory). Let describe them in brief. 

It can be said that the semi-classical approximation 
to quantum mechanics appeared simultaneously with 
quantum mechanics itself. As early as in his seminal 
work [6] Bohr wrote: “… the dynamical equilibrium of 
the systems in the stationary states can be discussed 
by help of the ordinary mechanics … . … assumption 
seems to present itself; for it is known that the ordinary 
mechanics cannot have an absolute validity, but will 
only hold in calculations of certain mean values of the 
motion of the electrons. On the other hand, in the 
calculations of the dynamical equilibrium in a stationary 
state in which there is no relative displacement of the 
particles, we need not distinguish between the actual 
motions and their mean values”. Standard quantum 
mechanics notwithstanding, Bohr’s celebrated model of 
the hydrogen atom is still taught as a paradigmatic 
example of successful modeling. There is argued [11] 
that contrary to widespread belief Bohr’s model is 
consistent and can be interpreted to support the 

moderate and selective version of the realistic 
description. 

It was reported [12] on so-called dipole–shell model 
of the atom, which can be considered as a neoclassical 
development of the Bohr’s semi-classical shell-model. 
In such a way, atom is represented as a classical 
object – set of nested each in other quasi-spheres or 
shells formed by circular / elliptical electron orbits. The 
conceptual basis of this model, which consists in using 
the Gauss theorem to reduce the multi-charge problem 
to the two-charge one, is interesting. But, we strongly 
disagree with the statement that such a purely classical 
description, completely neglecting any quantum effects, 
can give the exhaustive explanation of all the observed 
atomic phenomena. Although, it was really 
demonstrated how to extract useful information about 
the light atoms electronic structure from their classical 
study by numerical methods – see the example of two-
electron or helium-like atoms [13]. 

It is noteworthy that the Bohr’s simple semi-classical 
model gives exact electron energy spectrum for 
hydrogen-like atoms. This success of the semi-
classical approach is partially accidental. The fact is 
that the potential acting on single electron is purely 
Coulomb-like and the corresponding wave equation 
can be solved exactly. Not only for the attracting 
Coulomb [14], but also for any other exactly solvable 
bounding potential [15], the quantization rule in the 
initial quasi-classical or semi-classical approximation 
leads to exact values of discrete energy levels of the 
system. An attempt to directly extend the Bohr’s simple 
semi-classical model to helium-like atoms [16] leads to 
the renormalization of the nuclear charge number: 

. As a result, for two-electron atomic 
systems He0, Li+, and Be2+ the obtained ground state 
energies differ from the experimental ones only in a few 
percent. 

The review [17] also discussed the renaissance of 
semi-classical methods and described modified semi-
classical concepts and their application to two-electron 
atoms offering the viewpoint complementary to 
numerical quantum-mechanical alone. In this way, it 
was shown how the simple interpretations of the 
approximate quantum numbers and propensity rules 
can be given in terms of a few key periodic orbits of the 
classical three-body problem. Instead of trying to solve 
the wave equation explicitly, the focus lies on the study 
of the classical three-body Coulomb problem and its 
influence on spectral features of the corresponding 
quantum system. This includes the puzzling existence 
of Rydberg series for electron-pair motion. In particular, 
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by exploiting the classical information in detail, periodic 
orbit trace formulas are able to resolve quantitatively 
individual resonances and bound states from the 
ground state across the various two-body 
fragmentation thresholds. 

The suitability of simple Bohr-type analytical models 
was also demonstrated for electron trajectories in 
slightly more complex systems: atoms, small 
molecules, and ions with two or three electrons [18]. It 
was shown that the classical description of periodic 
motion is not necessarily limited to those cases where 
Planck constant is assumed to tend to zero: ℏ→0. 
Besides, there was found a simple extension of the 
Bohr molecular model [19] that gives a clear physical 
picture of how electrons create chemical bonding. The 
description is surprisingly accurate providing good 
ground-state potential energy curves not only for 
hydrogen molecule H2, but also relatively complicated 
molecules such as LiH, Li2, BeH, and He2. 

To simulate the many-electron systems such as 
materials, the semi-classical approximation has to be 
combined with the statistical one. Even the simplest 
Thomas–Fermi equation [20, 21] gives the distribution 
of intra-atomic electron density, which is suitable as 
initial approximation when interpreting the 
electromagnetic waves scattering by materials. 
Moreover, the methodology for describing the spectra 
system based on poor information allowed [22] to find 
single-electron densities even beyond electrons 
classical turning points based on Thomas–Fermi model 
and then use them for revealing shell-effects 
characteristic of many-electron quantum systems. 
When the number of electrons reaches about 10, the 
relative differences between model results and first-
principles ones decrease to 1 – 2 %.  

Further development of the approach leads to the 
class of modified Thomas–Fermi equations (see e.g. 
[23]), which take into account various statistical and 
quantum corrections introduced by adding 
corresponding terms in the atom electron system total 
energy expression. They are represented by series of 
powers of the small parameter , where ' denotes 

the number of electrons in the system. Thomas–Fermi 
model admits direct relativistic generalization as well. 
Emphasize that all these corrections are small enough 
to neglect their interferences. 

The most consistent generalization of the Thomas–
Fermi model is represented by the Magomedov radial-
statistical model [24], in which radial wave functions 
corresponding to the semi-classical SCF are introduced 
for spherical bound multi-electron system such as 

atom. This approach is equivalent to the Thomas–
Fermi model only in the limit of infinite number of 
electrons in the system: '→∞. Magomedov model has 
revealed the lost major correction  [25], the 
nature of which is purely statistical. It is associated with 
the replacement of the summation over quantum 
numbers by integration, when considering these 
numbers as continuous variables. The next correction, 

, basically is a statistical one as well – caused by 
taking into account the electron–electron exchange 
(Dirac correction). There are quantum and shell 
corrections (von Weizsacker correction and others) of 
the same parametric smallness, but with much smaller 
numerical coefficients. The introduction of the 
correction  (Amaldi correction) is caused by the 
necessity to exclude the nonphysical effect of electron 
self-action, i.e. again related to the use of statistical 
approximation. Thus, errors of the Thomas–Fermi-type 
approaches are predominantly of statistical origin, not 
semi-classical one. 

DFT is the most modern formulation of statistical 
modeling of multi-electron bounded systems. The 
density of the total kinetic energy of the electron jellium 
as a function of electron density permits systematic 
decomposition into quasi-classical series [26] and the 
initial – semi-classical approximation of the series 
corresponds to so-called LDA (Local-Density-
Approximation). The well-known success of 
applications practice of DFT and, in particular, LDA 
once again confirms the suitability of the semi-classical 
approaches to atoms and systems of bounded atoms, 
i.e. materials. 

4. CONSTRUCTING SEMI-CLASSICAL POTENTIALS 
AND ELECTRON ORBITALS 

Before calculating materials electronic structure in 
the semi-classical approximation, one needs to 
construct inner semi-classical potential acting on 
electrons of constituting atoms. Below, the term “atom” 
is understood to mean not only isolated neutral atoms 
or atomic ions, but also any of atom-like particles – the 
bounded system of a nucleus and electrons, which 
constitute “material” – the bounded system of atoms. 
Consider the atom containing nuclei with charge 
number of ( and ' electrons. Let number electrons by 
the index ) : 

        (13) 

Obviously, it is equivalent to the set of atomic 
quantum numbers. Denote the corresponding discrete 
electron energy levels by Ei Since the motion of 
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electrons in atom is assumed to be semi-classical, 
most of the time the $-electron should be near the 
surface of the sphere with certain radius !i. In other 
words, it is possible to assume that for )-electron radial 
coordinate is nearly constant  

By the Gauss theorem, the stationary radial electric 
field on the surface of the sphere coincides with the 
Coulomb field created by point charge localized at the 
center of the sphere, the value of which is determined 
by the sum of electric charges inside this sphere. 
Therefore, the potential energies  of atomic 
electrons can be approximated in the Coulomb-shaped 
form: 

        (14) 

where for )-electron the relation 

      (15) 

determines the effective charge number () of the 
nucleus shielded by all other electrons of the atom. 
Here functions  are the radial distributions of 
partial electron densities in atom. 

Expressing electric field potentials acting on atomic 
electrons in the Coulomb-like form is too convenient 
because the Coulomb potential is exactly solvable and 
therefore it is possible to find analytical representations 
of density functions , parameters   !) and +) and, 
thus, calculate the effective charge numbers (). Using 
these values one finds explicit electron : 

        (16) 

where radius  , azimuth  and 
polar  angles are the spherical 
coordinates. In general, for wave functions 
corresponding spherically symmetric potential their 
angular parts  are expressed as spherical 
harmonics normalized by the condition: 

      (17) 

Consequently, wave functions radial parts , 
which are real functions expressed by generalized 
Laguerre polynomials, have to satisfy the normalization 
condition: 

        (18) 

Then, the full solid angle 4, averaged partial 
electron densities are: 

         (19) 

As for the effective charge numbers, they take the 
following form: 

      (20) 

In the full atomic radial potential 

      (21) 

the nucleus Coulomb potential 

        (22) 

is added with electron cloud potential  
determined by Poisson’s equation: 

      (23) 

As is known, the superposition of potentials of 
constituent atoms localized in corresponding sites of 
the structure serves for good initial approximation to 
inner potential  of the material. Thus, 
potential energy of electron with radius-vector - in the 
material inner field would be: 

       (24) 

where index . numbers the constituent atoms and -. 
are the radius-vectors of sites of their localization in the 
material structure. 

For an elemental material the initial approximation 
to its wave function  can be presented as linear 
combination of electron orbitals of the constituting 
element in its isolated state: 

       (25) 

Here /. are the constants to be determined by 
solving the secular equation. 

Material electronic structure in initial approximation 
obtained in this way should be used for first 
approximation to functions  and  and so on 
until the iteration procedure yields the material 
electronic structure with desired accuracy of the 
calculations self-consistency. 
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5. CONCLUDING REMARKS 

Previously, author developed QCTS (Quasi-
Classical-Theory-of-Substance) [27-37], an original 
quasi-classical method for calculating ground state and 
electronic structure parameters of molecules, 
nanostructures, and crystals (the most detailed 
presentation of the theory see in the monograph [32]). 
When QCTS is based on the semi-classical 
parameterization of constituent atoms [38-40], electric 
charge density and electric field potential distributions 
in atoms are represented by radial step-like functions. 
Carrying out electronic structure calculations using this 
method requires the resolution of some special 
geometric and algebraic problems [41-47]. 
Mathematical aspects of the approach have been 
summarized in the monograph [46]. 

QCTS implemented [48-79] for a number of 
molecular systems, and nano- and crystalline 
materials, mainly elemental boron and boron nitride 
structural modifications. The values of materials ground 
state characteristics such as molar binding and 
vibrational energies, and chemical bonds length; as 
well as electronic structure (including the density of 
electronic states), discrete impurity levels of electron 
energies, and frequencies of localized vibrations, etc. 
were calculated. In addition, using same method some 
of isotopic effects in materials were interpreted [80-84]. 

The relative errors of QCTS in calculating materials 
energy and structural parameters do not exceed a few 
percent, what is quite acceptable for materials science 
problems. Emphasize that the ambiguous uncertainties 
absent if the calculations are carried out in such type 
semi-classical approximation. The point is that the 
step-like presentation of electric charge density and 
electric field potential distributions in atoms implies the 
absence of the probability of finding electrons outside 
the regions classically accessible to them and, 
consequently, the strict finiteness of atomic radii. But, 
at finite atomic radii the infinite series expressing the 
matrix elements of the secular equation turn into sums 
of a finite number of nonzero terms without artificial 
termination of series. 

However, advantage of the QCTS to avoid 
computation uncertainties turns into its disadvantage: 
the lack of expressions of electric charge density and 
electric field potential distributions in atoms and 
materials by continuous functions. 

Here this problem is resolved by introducing 
hydrogen-like orbitals for semi-classical electron states 
in atoms. Using them for basis set, the matrix elements 

of secular equation determining material electronic 
structure can by expressed analytically, in particular, in 
special functions. Thus, further decrease in the 
materials electronic structure semi-classical calculation 
errors is expected. 
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