Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

Synthesis and Characterization of High Temperature Properties of YBa2Cu3O6+δ Superconductor as Potential Cathode for Intermediate Temperature Solid Oxide Fuel Cells

DOI
https://doi.org/10.31875/2410-4701.2021.08.10
Submitted
November 30, 2021
Published
2021-11-30

Abstract

YBa2Cu3O6+δ (YBC) oxygen deficient perovskite was synthesized by an auto-combustion method and was studied as potential cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC). Synchrotron X-ray thermodiffraction in air shows a phase transition from orthorhombic Pmmm to tetragonal P4/mmm space groups at ~ 425 °C. The chemical compatibility with Ce0.9Gd0.1O1.95 (GDC) electrolyte was investigated in air where certain reactivity was observed above 800 °C. However, the main phase is Ba(Ce1-xYx)O3, a good ionic conductor. The catalytic performance in air was obtained by electrochemical impedance spectroscopy (EIS) measurements on YBC/GDC/YBC symmetrical cells. The area specific resistance (ASR) values change from 13.66 to 0.14 Ω cm2 between 500 and 800 °C, with activation energy (Ea) of 0.41 eV. The results suggest potential applications of YBC as IT-SOFC cathode.

References

  1. Aldo da Rosa, Fundamentals of Renewable Energy, 3rd ed., Oxford, UK, 2013. https://doi.org/10.1016/B978-0-12-397219-4.00017-5
  2. A. Samson Nesaraj, I. Arul Raj, R. Pattabiraman, Preparation and characterization of ceria-Based electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC), J. Iran. Chem. Soc 2010; 7: 564-584. https://doi.org/10.1007/BF03246044
  3. C. Lee, SW. Baek, J. Bae, Cathodic behavior of La0.8Sr0.2Co1−xMnxO3−δ perovskite oxide on YSZ electrolyte for intermediate temperature-operating solid oxide fuel cells, Solid State Ionics 2008; 179: 1465-1469. https://doi.org/10.1016/j.ssi.2008.01.009
  4. Z. Shai, S.M. Hale, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 2004; 431: 170-174. https://doi.org/10.1038/nature02863
  5. K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs, Acta Mater 2008; 56: 4876-4889. https://doi.org/10.1016/j.actamat.2008.06.004
  6. JH. Kim, M. Cassidy, J.T.S. Irvine, J. Bae, Advanced Electrochemical Properties of LnBa[sub 0.5]Sr[sub 0.5]Co[sub 2]O[sub 5+δ] (Ln=Pr, Sm, and Gd) as Cathode Materials for IT-SOFC, J. Electrochem. Soc 2009; 156: B682. https://doi.org/10.1149/1.3110989
  7. JL Yu, YM. Yin, ZF. Ma, Preparation and characterization of new cobalt-free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3−δ for IT-SOFC, Int. J. Hydrogen Energy 2013; 38: 10527-10533. https://doi.org/10.1016/j.ijhydene.2013.05.164
  8. Y. Ling, L. Zhao, B. Lin, Y. Dong, X. Zhang, G. Meng, X. Liu, Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3−δ for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy 2010; 35: 6905-6910. https://doi.org/10.1016/j.ijhydene.2010.04.021
  9. S. Vázquez, J. Basbus, AL. Soldati, F. Napolitano, A. Serquis, L. Suescun, Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells, J. Power Sources 2015; 274: 318-323. https://doi.org/10.1016/j.jpowsour.2014.10.064
  10. Q. Zhou, L. Xu, Y. Guo, D. Jia, Y. Li, WCJ. Wei, La0.6Sr0.4Fe0.8Cu0.2O3−δ perovskite oxide as cathode for IT-SOFC, Int. J. Hydrogen Energy 2012; 37: 11963-11968. https://doi.org/10.1016/j.ijhydene.2012.05.114
  11. S. Vázquez, S. Davyt, JF. Basbus, AL. Soldati, A. Amaya, A. Serquis, R. Faccio, L. Suescun, Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3− oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells, J. Solid State Chem 2015; 228: 208-213. https://doi.org/10.1016/j.jssc.2015.04.044
  12. HC. Yu, KZ. Fung, Electrode properties of La1−xSrxCuO2.5−δ as new cathode materials for intermediate-temperature SOFCs, J. Power Sources 2004; 133: 162-168. https://doi.org/10.1016/j.jpowsour.2004.02.002
  13. MA. Macias, MV. Sandoval, NG. Martinez, S. Vázquez-Cuadriello, L. Suescun, P. Roussel, K. Świerczek, GH. Gauthier, Synthesis and preliminary study of La4BaCu5O13+δ and La6.4Sr1.6Cu8O20±δ ordered perovskites as SOFC/PCFC electrode materials, Solid State Ionics 2016; 288: 68-75. https://doi.org/10.1016/j.ssi.2016.02.010
  14. EB. Mitberg, MV. Patrakeev, IA. Leonidov, AA. Lakhtin, VL. Kozhevnikov, KR. Poeppelmeier, High-temperature thermodynamics of oxygen equilibrium of solid solutions YBa2Cu3−xZnxO6+δ with gas phase, J. Alloys Compd. 274 (1998) 98-102. https://doi.org/10.1016/S0925-8388(98)00577-5
  15. JEH. Sansom, E. Kendrick, HA. Rudge-Pickard, MS. Islam, AJ. Wright, PR. Slater, Synthesis and characterisation of the perovskite-related cuprate phases YSr2Cu2MO7+y(M = Co, Fe) for potential use as solid oxide fuel cell cathode materials, J. Mater. Chem 2005; 15: 2321. https://doi.org/10.1039/b502641e
  16. J. SANSOM, Perovskite related cuprate phases as potential cathode materials for solid oxide fuel cells, Solid State Ionics. 2004; 175: 99-102. https://doi.org/10.1016/j.ssi.2004.09.035
  17. G. Cordaro, A. Flura, A. Donazzi, R. Pelosato, F. Mauvy, C. Cristiani, G. Dotelli, JC. Grenier, Electrochemical characterization of PrBa2−xSrxCu3O6+δ layered oxides as innovative and efficient oxygen electrode for IT-SOFCs, Solid State Ionics 2020; 348: 115286. https://doi.org/10.1016/j.ssi.2020.115286
  18. V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Zeitschrift Für Krist. - Cryst. Mater 2014; 229. https://doi.org/10.1515/zkri-2014-1737
  19. http://www.lnls.cnpem.br/linhas-de-luz/xpd-en/overview, (n.d.). http://www.lnls.cnpem.br/linhas-de-luz/xpd-en/overview/.
  20. R. von D. Larson, A, General structure analysis system (GSAS), LAUR 2004; 86-748.
  21. BH. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr 2001; 34: 210-213. https://doi.org/10.1107/S0021889801002242
  22. L. Baque, E. Djurado, C. Rossignol, D. Marinha, A. Caneiro, A. Serquis, Electrochemical Performance of Nanostructured IT-SOFC Cathodes with Different Morphologies, in: ECS Trans., ECS, 2009: pp. 2473-2480. https://doi.org/10.1149/1.3205802
  23. L. Baqué, A. Caneiro, MS. Moreno, A. Serquis, High performance nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochem. Commun 2008; 10: 1905-1908. https://doi.org/10.1016/j.elecom.2008.10.010
  24. F. Prado, A. Caneiro, A. Serquis, High temperature thermodynamic properties, orthorhombic/tetragonal transition and phase stability of GdBa2Cu3Oy and related R123 compounds, Phys. C Supercond 1998; 295: 235-246. https://doi.org/10.1016/S0921-4534(97)01797-8
  25. A. Jun, J. Kim, J. Shin, G. Kim, Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Technology, Chem Electro Chem 2016; 3: 511-530. https://doi.org/10.1002/celc.201500382
  26. X. Xu, J. Guo, Y. Wang, A. Sozzi, Synthesis of nanoscale superconducting YBCO by a novel technique, Phys. C Supercond. 2002; 371: 129-132. https://doi.org/10.1016/S0921-4534(01)01073-5
  27. U. Anselmi-Tamburini, P. Ghigna, G. Spinolo, G. Flor, Solid state synthesis of YBa2Cu3O7−x: Mechanisms of BaCuO2 formation, J. Phys. Chem. Solids 1991; 52: 715-721. https://doi.org/10.1016/0022-3697(91)90173-W
  28. H. Sözeri, H. Özkan, N. Ghazanfari, Properties of YBCO superconductors prepared by ammonium nitrate melt and solid-state reaction methods, J. Alloys Compd 2007; 428: 1-7. https://doi.org/10.1016/j.jallcom.2006.03.038
  29. A. Williams, GH. Kwei, RB. Von Dreele, ID. Raistrick, DL. Bish, Joint x-ray and neutron refinement of the structure of superconducting YBa 2
  30. P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors, J. Cryst. Growth 2004; 269: 625-629. https://doi.org/10.1016/j.jcrysgro.2004.05.082
  31. JD. Jorgensen, MA. Beno, DG. Hinks, L. Soderholm, KJ. Volin, RL. Hitterman, JD. Grace, IK. Schuller, CU. Segre, K. Zhang, M.S. Kleefisch, Oxygen ordering and the orthorhombic-to-tetragonal phase transition in Y Ba 2
  32. JD. Jorgensen, BW. Veal, AP. Paulikas, LJ. Nowicki, GW. Crabtree, H. Claus, WK. Kwok, Structural properties of oxygen-deficient YBa 2 Cu, Phys. Rev. B 1990; 41: 1863-1877.
  33. Y. Kubo, Y. Nakabayashi, J. Tabuchi, T. Yoshitake, A. Ochi, K. Utsumi, H. Igarashi, M. Yonezawa, Determination of the orthorhombic-tetragonal YBa2Cu3O7-δ phase boundary in the δ-T diagrama, Jpn. J. Appl. Phys 1987; 26: L1888-L1891. https://doi.org/10.1143/JJAP.26.L1888
  34. J. Mizusaki, H. Tagawa, K. Hayakawa, K. Hirano, Thermal Expansion of YBa 2 Cu 3 O 7 _ x as Determined by High-Temperature X-ray Diffraction under Controlled Oxygen Partial Pressures, J. Am. Ceram. Soc 1995; 78: 1781-1786. https://doi.org/10.1111/j.1151-2916.1995.tb08889.x
  35. M. Truchlý, T. Plecenik, O. Krško, M. Gregor, L. Satrapinskyy, T. Roch, B. Grančič, M. Mikula, A. Dujavová, Š. Chromik, P. Kúš, A. Plecenik, Studies of YBa2Cu3O6+x degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy, Phys. C Supercond 2012; 483: 61-66. https://doi.org/10.1016/j.physc.2012.07.004
  36. W. SUKSAMAI, I. METCALFE, Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC, Solid State Ionics 2007; 178: 627-634. https://doi.org/10.1016/j.ssi.2007.02.003
  37. T. Sakai, S. Matsushita, J. Hyodo, Y. Okuyama, M. Matsuka, T. Ishihara, H. Matsumoto, Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide, Electrochim. Acta 2012; 75: 179-184. https://doi.org/10.1016/j.electacta.2012.04.102
  38. J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, Insights on thermal and transport features of BaCe0.8−Zr Y0.2O3−δ proton-conducting materials, J. Power Sources 2015; 278: 436-444. https://doi.org/10.1016/j.jpowsour.2014.12.024
  39. T. Ohzeki, S. Hasegawa, M. Shimizu, T. Hashimoto, Analysis of phase transition behavior of BaCeO3 with thermal analyses and high temperature X-ray diffraction, Solid State Ionics 2009; 180: 1034-1039. https://doi.org/10.1016/j.ssi.2009.05.019
  40. A. Donazzi, R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, G. Dotelli, I.N. Sora, Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC, Electrochim. Acta 2015; 182: 573-587. https://doi.org/10.1016/j.electacta.2015.09.117