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Abstract: A novel Cu/NbCrN/NbCrON/SiO2 solar selective absorbing coating was successfully prepared by magnetron 
sputtering. In this coating, Cu, NbCrN, NbCrON and SiO2 act as the infrared reflector metal layer (and as substrate too), 
high metal volume fraction layer, low metal volume fraction layer and anti-reflection layer, respectively. The effects of the 
reactive gas flow rates of the absorption layers and the thickness of each layer were investigated and the optimal 
deposition parameters for the coatings were obtained. Finally the main result is that the best spectral properties with the 
absorptance of 0.93 and the emittance of 0.07 (25oC) are achieved. The experimental results indicate its potential 
applications in solar collectors. 
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1. INTRODUCTION 

Solar thermal utilization is one of the important 
fields in solar energy applications. One of the important 
component sinsolar photothermal applications is solar 
collector, which uses solar selective absorbing coating 
(SSAC) as the critical photo-thermal conversion 
surface [1-5]. An ideal solar selective absorbing coating 
should have a highest solar absorptance α (close to 
one) in solar radiation range (300–2500 nm) and a 
lowest thermal emittance ε (close to zero) in infrared 
(IR) range(>2500 nm) [6]. According to the typical 
double interference structure [7], a SSAC consists of 
an IR-reflective metallic layer, a high metal volume 
fraction (HMVF) cermet absorption layer, a low metal 
volume fraction (LMVF) cermet absorption layer and an 
anti-reflection ceramic layer from bottom to top [8-10].  

Recently, the SSACs based on transition metal 
nitrides and oxynitrides, have been reported due to 
their outstanding spectral selectivity, excellent oxidation 
resistance, and excellent chemical inertness [11-13], 
such as TiAlN/TiAlON/Si3N4 [6,14], NbAlN/NbAlON/ 
Si3N4 [15], Ti0.5Al0.5N/Ti0.25Al0.75N/AlN [13], HfMoN/ 
HfON/Al2O3 [16,17] and CrMoN/CrON [18]. In our 
previous work, we have reported the Nb-NbN [19], 
NbTiON(M)/NbTiON(D)/SiON [8] and NbMoN/NbMoON 
/SiO2 [9] coatings, which indicated that niobium based 
nitrides had good spectral selectivity and thermal 
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stability. It was reported recently that the chromium 
based nitrides such as CrNxOy/SiO2 [20], 
CrxOy/Cr/Cr2O3 [21] and AlCrSiN/AlCrSiON/AlCrO [22] 
are being developed for solar thermal applications. 
However, there was no report about niobium chromium 
nitride/oxynitride as solar selective absorbing coating. 
Therefore, we develop a new solar selective absorbing 
coating Cu/NbCrN/NbCrON/SiO2, which uses NbCrN 
/NbCrON bilayer as the absorption layer, so as to 
obtain an excellent spectral selectivity. 

In this article, the Cu/NbCrN/NbCrON/SiO2 coating 
was prepared by magnetron sputtering and its optical 
properties are discussed. The effects of the reactive 
gas flow rates for preparing the absorption layers and 
the thickness of each layer on the spectral properties 
were investigated and the optimal deposition 
parameters for the coatings were obtained. 

2. EXPERIMENTS 

The NbCrN, NbCrON and SiO2 layers were 
deposited by a magnetron sputtering system with multi-
target arrangement (JGP350C). The base pressure 
was lower than 1×10-4Pa.A pre-sputtering procedure 
was carried out to clean the target surface in the 
vacuum chamber under Ar atmosphere for 30 min. The 
Ar flow was kept constant at 50 sccm in the deposition 
process of each layer. A Cr target (Φ60 mm×3 mm, 
99.95% purity) with Nb slices (10 mm×10 mm×1 mm, 
99.99% purity) on it was used to deposit the NbCrN 
and NbCrON layers in an Ar + N2 and Ar + N2 + 
O2atmosphere, respectively. The details are presented 
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in Table 1. The SiO2 layer was prepared by sputtering 
aSi target (Φ60 mm×3 mm, 99.99% purity) under an 
Ar/O2 (8 sccm) atmosphere. The individual layers and 
multilayer coatings were deposited on copper 
(Cu)substrate (30 mm×30 mm ×0.1 mm). All substrates 
were cleaned using alcohol followed by de-ionized 
water in an ultrasonic agitator before being deposited. 
The deposition parameters of each layer are listed in 
Table 2. 

Table 1: Reactive Gas Flow Rates of the NbCrN and 
NbCrON Layers 

Nitride 
Samples 

N2 
flowrate 
(sccm) 

Oxynitide 
Samples 

N2 Flow 
Rate 

(sccm) 

O2 Flow 
Rate 

(sccm) 

S1 9 S6 21 1 

S2 12 S7 21 2 

S3 15 S8 21 3 

S4 18 S9 21 4 

S5 21 S10 21 5 

 

The crystal structure of the NbCrN and NbCrON 
layers was investigated by x-ray diffraction. Dektak 6 M 
surface profiler was used to measure the thickness of 
each layer. The 900UV/VIS/NIR equipped with an 
integrating sphere coated with barium sulphate was 
used to measure the reflectance (R) spectra in the 
wavelength range of 0.3-1.7 µm. The Bruker Tensor 27 
is a type of Fourier Transform Infrared Reflectance 
(FTIR) spectrometer equipped with an integrating 
sphere coated with gold which was used to measure 
the thermal emittance of the coating [20]. The solar 
absorptanceis calculated by Eqs. (1) and (2) [23, 24], 
where Is (λ) and Ib(λ, T) are the solar spectrum and the 
blackbody radiation spectrum at temperature T, 
respectively. 
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3. RESULTS AND DISCUSSION 

To analyze the crystal structure of NbCrN (S5) and 
NbCrON (S7) layers, NbCrN (S5) and NbCrON (S7) 
layers were deposited on glass substrates, 
respectively. And the thickness of each layer is about 
1000 nm. Figure 1 shows the x-ray diffraction patterns 
of the NbCrN (S5) and NbCrON (S7) layers .The XRD 
data of the nitride layer shows a high-intensity 
diffraction peak at 2θ= 36.727°which corresponds to 
CrNbN (003), and a low-intensity diffraction peak at 
2θ= 78.843°which corresponds to CrNbN (205), 
respectively. The XRD pattern of the oxynitride layer 
does not exhibit any XRD peaks, which means it is an 
amorphous phase. 
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Figure 1: XRD patterns of the NbCrN and NbCrON layers 
deposited on glass substrates.  

The structure schematic of the coating is illustrated 
in Figure 2 [25]. It is worthwhile to mention that the 
optical properties of the coating are very sensitive to 
any changes in the reactive gas flow rates and 

Table 2: Deposition Parameters for Individual Layers of the Cu/NbCrN/NbCrON /SiO2 Coating 

Layer Sputtering Method Substrate-to-Target Distance(mm) Sputtering Pressure (Pa) Power Density (W/cm2) 

NbCrN DC 60 1.0  4.23  

NbCrON DC 60 1.0  4.60  

SiO2 RF 80 0.5  3.54  
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thickness of each layer [9, 26]. Therefore, a number of 
experimental scenarios have been designed and 
performed systematically in order to optimize the 
coating. 

3.1. Optimization of The NbCrN Layer 

Figure 3(a) shows the R spectra of the NbCrN 
layers deposited on Cu substrate with different nitrogen 
flow rates in the wavelength range of 300 – 1700 nm, 
and the thicknesses of the NbCrN layers are fixed at 40 
nm. The R spectra decrease with nitrogen flow rate, 
resulting in the absorptance increasing with nitrogen 
flow rate as shown in Figure 3(b). However, when the 
nitrogen flow rate is above 21 sccm, the Cr target is 
poisoned in the reactive sputtering mode. That’s why 
the highest value of nitrogen flow rate is 21 sccm and is 
considered as the optimum nitrogen flow rate for 
preparing the NbCrN layer. The absorptance has the 
highest value with this deposition condition. 

 
Figure 2: Schematic of the Cu/NbCrN/ NbCrON /SiO2 
coating. 

 

The R spectra in the wavelength range of 300–1700 
nm of the NbCrN layers deposited on Cu substrate by 
changing the layer thickness from 20 nm to 60 nm are 
shown in Figure 4(a), and the nitrogen flow rate of the 
NbCrN layer is fixed at 21 sccm as said before. The R 
spectra in the wavelength range of 500 - 1100 nm 
increase with the NbCrN layer thickness, and decrease 
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Figure 3: Reflectance spectra (a) and absorptance values (b) of the NbCrN layers (thickness: 40 nm) deposited on Cu 
substrate with different nitrogen gas flow rates. 
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Figure 4: Reflectance spectra (a) and absorptance values (b) of the NbCrN layers deposited on Cu substrate with different 
NbCrN layer thicknesses.  
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with thickness increasing in the wavelength above 
1100nm. As Figure 4(b) shows, the absorptance first 
increases and then slightly decreases. The NbCrN 
layer achieves the highest absorptance when the layer 
thickness is 30 nm, which is chosen as the optimal 
thickness for the NbCrN layer in the next optimization 
process. 

3.2. Optimization of The NbCrON Layer 

Figure 5(a) shows the R spectra of the 
Cu/NbCrN/NbCrON by only changing the oxygen flow 
rates for LMVF layer in the wavelength range of 300-
1700nm. The nitrogen flow rate for both NbCrN and 
NbCrON layers is fixed at 21 sccm, and the 
thicknesses of NbCrN and NbCrON layers are 30nm 
and 50nm, respectively. It can be observed that when 
the oxygen flow rate increases, the R spectrain the 
wavelength range of 1100 - 1700 nm initially increases, 

reaches a maximum for S9 and then decreases. The 
S6 doesn’t have an interference peak near 700 nm 
compared with other samples. This is the reason that 
the oxygen flow rate for S6 is too low to distinguish the 
optical properties of the S5 and S6 samples. The 
absorptance values as a function of oxygen flow rate 
for the LMVF layer are shown in Figure 5(b). With 
increasing the oxygen flow rate from 1.0 to 2.0 sccm, 
the absorptance increases; whereas above 2 sccm, no 
more obvious change is observed. Thus the oxygen 
flow rate of 2 sccm for the NbCrON layer is chosen.  

The R spectra in the wavelength range of 300–1700 
nm of the Cu/NbCrN/ NbCrON with different LMVF 
layer thickness (from 40 nm to 80 nm) are shown in 
Figure 6(a). From previous optimization, the nitrogen 
flow rate for the NbCrN and NbCrON layers is 21 sccm, 
the oxygen flow rate for the NbCrON layer is 2 sccm 
and the thickness of NbCrN layer is 30 nm. The R 
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Figure 5: Reflectance spectra (a) and absorptance values (b) of the Cu/NbCrN/NbCrON layers with different oxygen gas flow 
rates for preparing NbCrON layer.  
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Figure 6: Reflectance spectra (a) and absorptance values (b) of the Cu/NbCrN/NbCrON layers with different NbCrON layer 
thicknesses.  
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spectra has a red shift as the NbCrON layer thickness 
increases, which results in the R spectra increasing 
with the NbCrON layer thickness in the wavelength 
range of 300-500nm. This will lead to the decrease of 
the absorptance, which is not our expectation. The 
intensity of interference peak decreases with the 
NbCrON layer thickness in the wavelength region of 
500-950nm, which causes the increase of the 
absorptance. As shown in Figure 6(b), the absorptance 
has no significant change when the thickness is above 
50nm. The highest absorptance value is obtained when 
the NbCrON layer thickness is 50nm, which is chosen 
as the optimal thickness for the NbCrON layer in the 
next optimization process. 

3.3. Optimization of The SiO2 Layer 

Figure 7(a) shows the R spectra of the 
Cu/NbCrN/NbCrON/SiO2coating with different SiO2 
layer thickness from 70–110nm, and the thicknesses of 
NbCrN and NbCrON layers are 30nm and 50nm, 
respectively. S5 and S6 are taken as the absorption 
layers. As Figure 7(a) shows, the R spectra has a red 
shift as the SiO2layer thickness increases, and the 
interference peak intensity is weakened in the 
wavelength range from 400-700 nm. This impairs the 
absorptance in the wavelength range from 300–500 nm 
whereas it enhances the absorptance in the 
wavelength range from 400-700 nm, respectively. The 
R spectra increase with the SiO2 layer thickness in the 
wavelength region from 600-1700nm which decreases 
the absorptance. 

The solar absorptance values as a function of the 
SiO2 layer thickness are shown in Figure 7(b). With 
increasing of the thickness, the absorptance value first 
increases and then decreases. This is due to the 

mutual balance competition between the red shift of the 
R spectra which decreases the absorptance and the 
weakened intensity of the interference peak which 
enhances the absorptance. For comprehensive 
consideration of the high absorptance for the coating, 
we choose 80 nm as the optimum thickness of the SiO2 

layer. 

The reflectance spectra of layer-added optimal 
tandem absorber in solar spectrum range are 
presented in Figure 8. The optimized Cu/NbCrN/ 
NbCrON/SiO2 coating exhibits the low reflectance in 
300-2500 nm region and high reflectance in the 
wavelength range of 2.5-25 µm. The reflectance curve 
rises sharply from 2000 nm. The measured solar 
absorptance of the coating is 0.93 and emittance is 
0.07 (25oC). According to our primary experiments, this 
tandem absorber is believed to have excellent thermal 
stability, which will be reported in another article.  
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Figure 8: Reflectance spectra of layer-added optimal tandem 
absorber in solar spectrum range. 
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Figure 7: Reflectance spectra (a) and absorptance values (b) of the Cu/NbCrN/NbCrON/ SiO2 layers with different SiO2 layer 
thicknesses. 
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CONCLUSION 

A novel solar selective absorbing coating of 
Cu/NbCrN/NbCrON/SiO2 with a high absorptance of 
0.93 and low emittance of 0.07 (25℃) was prepared 
using magnetron sputtering. Through adjusting and 
optimizing the nitrogen and oxygen flow rates, and 
thickness of each layer, the optimal deposition 
parameters for the coatings are obtained. The optimal 
nitrogen and oxygen flow rates of the NbCrN and 
NbCrON coatings are 21sccm and 2sccm, respectively. 
The optimum thicknesses of the NbCrN, NbCrON and 
SiO2 layers are 30 nm, 50 nm and 80 nm, respectively. 
The coating possesses excellent spectral selectivity 
and has a potential application for solar collector. 
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