
Willian M. Duarte¹*, Tiago F. Paulino², Wendel M. Duarte³, Antônio A.T. Maia¹, and Luiz Machado¹

¹Post-Graduate Program in Mechanical Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
²Post-Graduate Program in Mechanical Engineering, Federal Center of Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte (MG), Brazil
³Federal Center of Technological Education of Minas Gerais (CEFET-MG), Post-Graduate Program in administration, Belo Horizonte (MG)

Abstract: This paper presents the development of a mathematical model for a direct-expansion solar-assisted heat pump (DX-SAHP) operating in steady-state. The mathematical model was implemented using the scientific software EES and using a code written in Python. It was utilized a lumped parameter model for the heat exchangers and a semi-empirical model for the compressor. The mathematical model was validated using experimental data of a DX-SAHP running with R134a. Two hundred simulations were made combining different correlations for estimating the convective heat transfer coefficient in the evaporator/collector. The Mean Absolute Deviation (MAD) and the Mean Deviation (MD) between the theoretical and experimental values for the COP were 2.6±1.8 % and 0.9±1.8 %, respectively. The MAD and MD between the discharge temperature were 1.56±1.06 °C and -1.45±0.16 °C. The mean difference between the results using EES and Python were 1.4 %, The use of Python with parallel computing for uncertainty analyses, reduced the simulation time in 88 % if compared with EES. The model in Python is available as open-source through the platform Google Colaboratory.

Keywords: Model, DX-SAHP, Uncertainty, Parallel Computing, Open-source.

1. INTRODUCTION

Replacing electric heaters by heat pumps has several advantages such as reducing operating costs, reducing energy consumption, and reducing greenhouse gas emissions. According to recent studies, employing renewable energies like solar energy [1-3], geothermal energy [4-6], wind power [7] and bio-gas [8] is one way to increment the COP of the heat pumps. Different Solar-Assisted Heat Pump (SAHP) setups that were found in the literature review presented by Bucker and Riffat [9]. According to the authors, a Direct-Expansion Solar-Assisted Heat Pump (DX-SAHP) is a device where the refrigerant passes via the solar collector/evaporator. In the Indirect Expansion Solar-Assisted Heat Pump (IX-SAHP) the evaporator and solar collector are different components and brine flows through the solar collector.

Various studies using mathematical models for DX-SAHP were found in the literature. Most of them are complete models of the system, but some studies modeled partially the heat pump [10-13]. The studies using complete models of DX-SAHP are summarized in Table 1. In column collector type UFP represents uncovered flat plate, CFP represents covered flat plate and PVT represents photo-voltaic thermal hybrid solar collectors. The information missing in some studies is marked with ‘-‘, and information not applicable is marked with N.A.

In the literature consulted most models were validated with experimental data, comparing the COP or the water temperature in the tank or at the outlet of the condenser. Only in the work presented by Chyng et al. [14] the authors compared the theoretical and experimental compressor outlet temperature. Predict the discharge temperature of the compressor is important to increase the life span of the compressor. High temperatures in the suction also increase the discharge temperature, resulting in the loss of viscosity of the lubricating. This condition of operation can reduce considerably the life span of the compressor. The performance indicator most used to assess the accuracy of the model was the relative error or mean relative deviation. The relative error for some models is listed in Table 1. In the early studies presented by Torres-Reyes and Gortari [15], Hawlader et al. [16], Ito et al. [17], Chaturvedi et al. [18] and Chaturvedi and Shen [19] the comparison of the measured and calculated values was made qualitatively plotting both results in the same graphic with the same scale. Additionally, in the studies listed in Tab. 1 it was not evaluated different correlations for the convective
coefficients to assess its influence on the results. Lastly, no computer code is provided for the scientific community.

In the works listed in Table 1, none of them evaluated the precision of the model through the uncertainty analysis as recommended by ASME [20] during the validation process, although there are in the studies listed in the Table 1 with uncertainty analysis of the experimental results. In fact there are few studies that relate uncertainty to the model results but none of then uses the method standardized in the

Guide to the expression of Uncertainty in Measurement (GUM) presented by BIPM et al. [21]. Zhang et al. [22] and Zhang et al. [23] investigate the impact of model uncertainty on the energy consumption of water source heat pump comparing different models. Frutiger et al. [24] presented a refrigerant selection for Heat pump using the Monte Carlo method. Coppitters et al. [25] proposed a method for robust design optimization of a Photovoltaic-battery-heat pump system considering uncertainty of some parameter such as electricity price using the the Polynomial Chaos Expansion for uncertainty quantification. A similar study to Coppitters

<table>
<thead>
<tr>
<th>Authors</th>
<th>Collector Type</th>
<th>Collector size (m²)</th>
<th>Refrigerant</th>
<th>Experimental Validation</th>
<th>Relative error (%)</th>
<th>Location</th>
<th>Tank size (L)</th>
<th>Water Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaturvedi and Shen [19]</td>
<td>UFP</td>
<td>3.4</td>
<td>R12</td>
<td>Yes</td>
<td>-</td>
<td>Norfolk</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaturvedi et al. [18]</td>
<td>UFP</td>
<td>3.5</td>
<td>R12</td>
<td>Yes</td>
<td>-</td>
<td>Norfolk</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ito et al. [17]</td>
<td>UFP</td>
<td>3.2</td>
<td>R22</td>
<td>Yes</td>
<td>-</td>
<td>Japan</td>
<td>-</td>
<td>30-60</td>
</tr>
<tr>
<td>Torres-Reyes and Gortari [15]</td>
<td>UFP</td>
<td>4.5</td>
<td>R22</td>
<td>Yes</td>
<td>-</td>
<td>Guanajuato</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hawlader et al. [16]</td>
<td>UFP</td>
<td>3.0</td>
<td>R134a</td>
<td>Yes</td>
<td>-</td>
<td>Singapore</td>
<td>250</td>
<td>55</td>
</tr>
<tr>
<td>Chyang et al. [14]</td>
<td>UFP</td>
<td>1.9</td>
<td>R134a</td>
<td>Yes</td>
<td>10 (max)</td>
<td>Taiwan</td>
<td>-</td>
<td>52-56</td>
</tr>
<tr>
<td>Kuang et al. [40]</td>
<td>UFP</td>
<td>2.0</td>
<td>R22</td>
<td>Yes</td>
<td>5-30</td>
<td>Shanghai</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Chata et al. [41]</td>
<td>UFP</td>
<td>-</td>
<td>R404A, R407C, R410A, R12, R22 and R134a</td>
<td>No</td>
<td>N.A.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xu et al. [42]</td>
<td>PVT</td>
<td>2.3</td>
<td>R22</td>
<td>No</td>
<td>N.A.</td>
<td>Nanjing</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Chow et al. [43]</td>
<td>UFP</td>
<td>12</td>
<td>R134a</td>
<td>No</td>
<td>N.A.</td>
<td>Hong Kong</td>
<td>1500</td>
<td>50</td>
</tr>
<tr>
<td>Kong et al. [44]</td>
<td>UFP</td>
<td>4.2</td>
<td>R22</td>
<td>Yes</td>
<td>1-4.6</td>
<td>Shanghai</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Moreno-Rodriguez et al. [45]</td>
<td>UFP</td>
<td>5.6</td>
<td>R134a</td>
<td>Yes</td>
<td>10 (max.)</td>
<td>Madrid</td>
<td>300</td>
<td>51</td>
</tr>
<tr>
<td>Chaturvedi et al. [46]</td>
<td>UFP</td>
<td>1.5</td>
<td>R134a</td>
<td>No</td>
<td>N.A.</td>
<td>Norfolk</td>
<td>-</td>
<td>50-70</td>
</tr>
<tr>
<td>Sun et al. [47]</td>
<td>UFP</td>
<td>2.0</td>
<td>-</td>
<td>No</td>
<td>N.A.</td>
<td>Shanghai</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Deng and Yu [48]</td>
<td>CFP</td>
<td>2.5</td>
<td>R134a</td>
<td>No</td>
<td>N.A.</td>
<td>-</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Kong et al. [49]</td>
<td>UFP</td>
<td>4.2</td>
<td>R410A</td>
<td>No</td>
<td>N.A.</td>
<td>-</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Mohamed et al. [50]</td>
<td>UFP</td>
<td>4.2</td>
<td>R407C</td>
<td>Yes</td>
<td>4 (max.)</td>
<td>Nottingham</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Duarte [51]</td>
<td>UFP</td>
<td>1.6</td>
<td>R134a, R600a, R290, R1234yf and R744</td>
<td>Yes</td>
<td>5(max.)</td>
<td>Belo Horizonte</td>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>Rabelo et al. [52]</td>
<td>UFP</td>
<td>1.3-6</td>
<td>R134a and R290</td>
<td>Yes</td>
<td>-</td>
<td>Belo Horizonte</td>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>Kong et al. [53]</td>
<td>UFP</td>
<td>2.1</td>
<td>R134a</td>
<td>Yes</td>
<td>10 (max.)</td>
<td>-</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>Diniz et al. [54]</td>
<td>UFP</td>
<td>1.6</td>
<td>R744</td>
<td>Yes</td>
<td>-</td>
<td>Belo Horizonte</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>Wang et al. [55]</td>
<td>UFP</td>
<td>2.1</td>
<td>R134a</td>
<td>Yes</td>
<td>13 (max.)</td>
<td>-</td>
<td>200</td>
<td>30-50</td>
</tr>
<tr>
<td>Ma et al. [56]</td>
<td>UFP</td>
<td>2.3</td>
<td>R22</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dai et al. [57]</td>
<td>UFP</td>
<td>100</td>
<td>R134a</td>
<td>No</td>
<td>N.A.</td>
<td>Beijing</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Humia et al. [58]</td>
<td>UFP</td>
<td>1.6</td>
<td>R744</td>
<td>Yes</td>
<td>5-7.5</td>
<td>Belo Horizonte</td>
<td>200</td>
<td>60</td>
</tr>
</tbody>
</table>
et al. [25] was presented by Moarry [26] but for a Ground Source Heat Pumps (GSHP) and by Nielsen et al. [27] for an Air Source Heat Pumps (ASHP). Lastly, an experimental validation, without considering the uncertainty of the model, was made by some scholar for Indirect-Expansion Solar-Assisted Heat Pump (IX-SAHP) [28, 29], for GSHP [30-32], for Solar-Assisted Ground Source Heat Pump (SAGSHP) [33] and for refrigeration system [34-36]. One of the possible reasons for the aforementioned authors not to perform model uncertainty analysis is the fact that the computational time for calculating model uncertainty is very high. One possible strategy to reduce the computational time is the use of parallel processing as done by some authors [37-39].

Three research gaps in conjunction with the previous studies of described above was identified: (i) No study present a open source model; (ii) No study is involved in the results uncertainty of the model during the experimental validation; (iii) The flow conditions in the solar evaporation can be very different from the conditions used in the development of the correlation, but no study tested different correlations and investigated the influence on the results and uncertainty. This work presents a mathematical model for a DX-SAHP to fill the above-mentioned gaps. Two hundred simulations were performed combining different correlations for estimating the convective heat transfer coefficient. The best combination was employed in the validation tests using experimental data of COP and discharge temperature, taking into account the uncertainty of theoretical and experimental results. To the best of the authors’ knowledge, this is the first work that considers uncertainty during the comparison between theoretical and experimental results using parallel computing.

2. MATHEMATICAL MODEL

The refrigerant fluid chosen for this work was the R134a because it is more suitable for DX-SAHP than R410A, R407C and R404A, as indicated by Chata et al. [41]. Also, R134a is one of the refrigerants most used in the recent studies of DX-SAHP [59-62, 52] and lastly, the refrigerant utilized in the actual testing was what allowed the mathematical model to be validated.

Equation Engineering Solver (EES) and Python 3.8 were used to create a quasi-steady-state model to assess the performance of DX-SAHP in producing DHW (Domestic Hot Water). The pipeline was deemed to be two meters long for the purposes of the refrigerant inventory charge, and the losses in the tubes between components were thought to be insignificant. A lumped model was applied, with the evaporator/solar collector and condenser being considered to be isobaric. The modeling equation for each component is provided below.

2.1. Compressor Model

As mentioned by de Paula et al. [63], in the literature, there are detailed models of compressors but these models required many parameters and geometrical details that are not provide by the manufactures of hermetic compressors [64, 65, 66]. Additionally, the compressor model used in the complete model of the refrigeration system is a simple one as those employed in other studies [49, 67, 68]. The mass flow rate \(\dot{m} \) for a reciprocating compressor with constant rotation speed is given by [61]:

\[
\dot{m} = \rho_i n V_s \eta_{vol}
\]

(1)

where \(n \) is the rotation speed (3500 rpm), \(V_s \) is the compressor swept volume (7.95 cm3/rev.), \(\eta_{vol} \) is the volumetric efficiency, and the subscript 1 denotes the compressor intake or evaporator outlet. The thermodynamic properties were calculated using the internal library of EES [69] or the library CoolProp [70] in the Python version. The compressor electric power \(W \), was calculated using the isentropic compression process as reference as made by Minetto [71]:

\[
W = \frac{m(i_{2s} - i_1)}{\eta_g}
\]

(2)

where \(i \) is the refrigerant specific enthalpy and \(\eta_g \) is the global efficiency, and the subscript 2S denotes the compressor outlet when taking into account an isentropic process. The global and volumetric efficiency were determined fitting polynomial equation using the pressure ratio as the independent variable to the compressor performance map provided by the manufacturer as performed by [71]. To obtain with good precision, the discharge temperature of the compressor \((T_{2\text{c}}) \) an isentropic efficiency \((\eta_i) \) was considered, and the enthalpy at the exit of the compressor evaluated as follow:

\[
i_2 = \frac{i_{2s} - i_1}{\eta_i} + i_1
\]

(3)

2.2. Evaporator Model

As mentioned by Duarte et al. [72], there are many studies use distributed heat exchangers models [73-75], but such models require much computational effort if compared with lumped models. Additionally, some studies demonstrate that the concentrated model can be used to quickly assess system performance [76-78]. As made by some scholar [52, 53, 55] the pressure of
the refrigerant was assumed constant in the condenser and in solar collector/evaporator. The refrigerant in the evaporator receives heat at the following rate:

\[\dot{Q}_{re} = \dot{m}(\dot{i}_1 - \dot{i}_a) \]

(4)

where the thermostatic valve outlet or evaporator intake is indicated by the subscript 4. In order to assess the energy gain in a flat plate collector (\(Q_{col}\)) under steady-state conditions the following equation is suggested by [44]:

\[Q_{col} = A_e F'[S - U_{ev}(T_r - T_a)] \]

(5)

where \(T_a\) is the ambient air temperature, \(T_r\) is the average temperature of the refrigerant fluid, \(U_{ev}\) is overall heat loss coefficient, \(A_e\) is the area of the evaporator (1.65 m²) and \(S\) is the net radiation absorbed. The collector effectiveness factor (\(F'\)) is derived using the Hottel-Whilliar-Bliss model provided by Duffie and Beckman (2013), taking into account the resistance to heat flow owing to the bond between the collection plate and tube, as follows:

\[F' = \frac{1}{U_{ev}} \left\{ W \left[\frac{1}{U_{ev}[D_o + P(F(W-D_o))]} + \frac{1}{\pi d_i h_i} \right] \right\}^{-1} \]

(6)

where \(W\) is the distance between the tubes in the evaporator, \(F\) is the fin efficiency, \(D_o\) is the outer diameter, \(D_i\) is the inner diameter, and \(h_i\) is the internal convective coefficient. The fin efficiency may be calculated as follows:

\[F = \frac{\tanh[(W-D_o)/2 \sqrt{U_{ev}(68)}]}{(W-D_o)/2 \sqrt{U_{ev}(68)}} \]

(7)

where \(\delta\) is the thickness of the fin (1mm) and \(k\) is the thermal conductivity. The net radiation absorbed is calculated in follows [49]:

\[S = a_1 - \varepsilon \sigma (T_r^4 - T_{sky}^4) \]

(8)

where \(a\) is the absorptivity, \(I\) is the solar radiation intensity normal to the evaporator, \(\varepsilon\) is the emissivity, \(\sigma\) is the Stefan-Boltzmann constant, and \(T_{sky}\) is the sky temperature. The sky temperature was calculated using the approach described by Giliah et al. [79] (Eq. 9) using the Angstrom correlation proposed by Berdahl and Fromberg [80] for sky emissivity (Eq. 10).

\[T_{sky} = (\varepsilon_{sky} T_a^4)^{1/4} \]

(9)

\[\varepsilon_{sky} = 0.734 + 0.0061(T_{dp} - 273.15) \]

(10)

Kong et al. [44] presented a collector total heat loss coefficient that is calculated by:

\[U_{ev} = h_o + 4\varepsilon \sigma T_a^3 \]

(11)

where the external convective coefficient (\(h_o\)) is obtained by the correlations for free or forced convection. For natural flow on horizontal flat plate, some authors [81, 82, 83] pointed the correlation of Lloyd and Moran [84], tested for \(10^3 < Ra < 10^{10}\) and shown on EQ. 12. For this flow configuration, the characteristic length is defined as the ratio between area and plat perimeter. To determine the Nusselt number the Churchill and Chu [85] correlation is used EQ. 13 for \(0.1 < Ra < 10^7\) and EQ. 14 for \(10^7 < Ra < 10^{12}\).

\[Nu = 0.27 Ra^{1/4} \]

(12)

\[Nu = 0.68 + \frac{0.67 Ra^{1/4}}{(1+(0.492/Pr)^{0.16})^{1/79}} \]

(13)

\[Nu = \left[0.825 + \frac{0.387 Ra^{1/6}}{(1+(0.492/Pr)^{0.16})^{1/27}}\right]^2 \]

(14)

\[Ra = \frac{9 \beta \rho c^2 \Delta T L_e^3}{\mu^2 Pr} \]

(15)

In these equations \(\beta\) is the coefficient of thermal expansion, \(\Delta T\) is the temperature difference between the surface and the quiescent fluid, and \(L_e\) is the characteristic length. All proprieties are evaluated at

Figure 1: Schematic diagram of DX-SAHP used for a validation model.
film temperature, except β which is evaluated at quiescent fluid temperature. For inclined plates, top-cold and bottom-hot, Bergman et al. [81] propose to evaluate the convective coefficient for vertical plate, replacing the value of the gravity by the expression $g \cdot \sin(\theta)$ in the Rayleigh number. Subsequently, must repeat the process using the expression $g \cdot \cos(\theta)$ in the correlations for horizontal plate and adopting the highest value.

To calculated the Nusselt number in forced flow Neils and Klein [82] suggest the correlation of Churchill and Ozoe [86], Eq. 16, for laminar flow, $Re < Re_{crit} = 5 \cdot 10^5$, and the Eq. 17 for turbulent flow. In equation 17 Nu_{crit} is evaluated using Eq. 16 for $Re = Re_{crit}$. Neils and Klein [82] recommend the use of forced flow if Péclet number (Eq. 18) is greater than 100.

$$Nu = \frac{0.6774Re^{1/2}Pr^{1/3}}{[1 + 0.0468(Pr^{2/3})^{17/4}]}$$

(16)

$$Nu = Nu_{crit} + 0.037Pr^{1/3}(Re^{0.8} - Re_{crit}^{0.8})$$

(17)

$$Pe = RePr$$

(18)

The internal convective coefficient (h_i), in the boiling region, is given by Shah [87] and it is the largest value given by the Eq. 19 to 22. B_A is equal to Co if horizontal with $Fr_L \geq 0.04$ or vertical and equal to $0.38CoFr_L^{-0.3}$ if horizontal with $Fr_L < 0.04$. $B_B = 14.7$ for $Bo \geq 0.0011$ and $B_B = 15.4$ for $Bo < 0.0011$. $B_C = 2.1 - 0.008W_eV - 110Bo$ if $B_C \geq 1$ and $B_C = 1$ if $B_C < 1$ or $Fr_L < 0.01$.

$$h = 1.8B_A^{-0.8}B_C h_L$$

(19)

$$h = 230Bo^{-0.5}B_C h_L$$

(20)

$$h = B_BBo^{-0.5}\exp(2.74B_A^{-0.1})B_C h_L$$

(21)

$$h = B_BBo^{-0.5}\exp(2.74B_A^{-0.15})B_C h_L$$

(22)

In these equations, h_L is the liquid heat transfer coefficient calculated by Dittus and Boelter [88] (Eq. 23), the Froud number is calculated by Eq. 24, the convection number by Eq. 25, the Weber number by Eq. 27, and the boiling number by Eq. 28.

$$Nu = 0.023Re^{0.8}Pr^{0.4}$$

(23)

$$Fr_L = \frac{G^2}{\rho_L^3 g D_i}$$

(24)

$$Co = \left(\frac{1 - \alpha}{\alpha}\right)\left(\frac{Pr_v}{Pr_L}\right)^{0.5}$$

(25)

$$G = \frac{m}{\bar{X}}$$

(26)

$$We_v = \frac{G^2D_i}{\rho_v\sigma_f}$$

(27)

$$Bo = \frac{q}{G (\nu - \nu_L)}$$

(28)

In fact, the flow in the heat pump evaporator it is relatively peculiar. The flow alternates between ascending and descending and it is inclined in relation to the horizontal. Such conditions are not normally implemented on test benches where correlations for heat transfer are tested. Therefore, it is interesting to test different equations to evaluate the heat transfer in the heat pump evaporator. Alternatively, to the correlation of Shah [87] it was tested the correlation of Liu and Winterton [89] and Sun and Mishima [90]. The correlation of Liu and Winterton [89] is given by Eq. 29 to 33, where h_{po} is evaluated using the correlation of Cooper [91] (Eq. 33) and h_L is evaluated using the correlation of Dittus and Boelter [88] (Eq. 23).

$$h = \sqrt{(B_A \cdot h_L)^2 + (B_C \cdot h_{po})^2}$$

(29)

$$B_A = (1 + 0.055B_A^{0.11}Re_{lo}^{-0.16})^{-1}$$

(30)

$$B_C = [1 + xPr_l(\rho_L/\rho_v - 1)]^{0.35}$$

(31)

$$Re_{lo} = \frac{G D_i}{\mu_L}$$

(32)

$$h_{po} = 55 \left(\frac{\mu_L}{\rho_v}\right)^{0.12} q^{2/3} \left[-\log_{10}\left(\frac{\rho_v}{\rho_L}\right)\right]^{-0.55} M^{-0.5}$$

(33)

The correlation of Sun and Mishima [90] is given by Eq. 34 and We_L is evaluated as Eq. 27 but using the liquid density.

$$Nu = \frac{6Re_{lo}^{0.65}Bo^{0.54}}{We_L^{2.19}(\rho_L/\rho_v)^{0.42}}$$

(34)

The internal convective coefficient (h_i), in the super-heated vapor region, is calculated by Gnielinski [92] that is the most recommended correlation for turbulent fully developed single phase flow [93, 81, 82]. The correlation of Gnielinski [92] in described in Eq. 35 and Neils and Klein [82] suggest the correlation proposed by Zigrang and Sylvester [94] for Darcy friction factor (f) describe in Eq. 36.

$$Nu = \frac{(f/8)(Re-1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3}-1)}$$

(35)

$$f = -4 \log_{10} \left[\frac{e}{3.76} - \frac{5.02}{Re} \log_{10} \left(\frac{e}{3.76} + \frac{13}{Re}\right)\right]^2$$

(36)

2.3. Coaxial Condenser Model

The balance of energy in the refrigerant at the condenser is evaluated as follow:

$$Q_{cond} = m_r (i_2 - i_3)$$

(37)

Assuming no heat loss in the coaxial condenser, the balance of energy in the water is given by:
Table 2: Flows Regime of the Correlation of Shah [95]

<table>
<thead>
<tr>
<th>Regime</th>
<th>Horizontal Flow</th>
<th>Vertical Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime I</td>
<td>$We_f > 100$ and $v \geq 0.98(8 + 0.263)^{-0.62}$</td>
<td>$We_f > 100$ and $v \geq (0.73 + 2.48)^{-1}$</td>
</tr>
<tr>
<td>Regime III</td>
<td>$We_f > 20$ and $v \leq 0.95(1.254 + 2.27B^{1.245})^{-1}$</td>
<td>$We_f > 20$ and $v \leq 0.89 - 0.93 \exp(-0.087B^{-1.17})$</td>
</tr>
</tbody>
</table>

\[\dot{Q}_{\text{cond}} = m_w C_w (T_{w0} - T_{wi}) \]

The effectiveness-NTU technique is used to determine the heat transfer rate in the condenser. The effectiveness (ξ or ξ') of a concentric heat exchanger is evaluated as follows [81]:

\[\xi = \frac{\dot{Q}_{\text{cond}}}{\bar{c}_m(T_{wi} - T_{w0})} \]

\[\xi' = \frac{1 - \exp[-NTU(1 - \bar{c}_m/c_{\text{max}})]}{1 - \exp[-\nu(1 - \bar{c}_m/c_{\text{max}})c_{\text{min}}/c_{\text{max}}]} \]

where \bar{c}_m and c_{max} is the equal to c_r or c_w, whichever is smaller and bigger, respectively. The refrigerant and water heat capacity rate are given by:

\[\bar{c}_r = m_r c_r \]

\[\bar{c}_w = m_w c_w \]

In these equations, the mean specific heat of the refrigerant (\(\bar{c}_r\)) is evaluated by EQ. 43 [51] and the Number of Transfer Units (NTU) by EQ. 44 [81].

\[\overline{\text{NTU}} = \frac{U/A}{m_w c_w} \]

The UA value is calculated as follows [83]:

\[UA = \left(\frac{1}{\pi \nu D_{\text{cond}}} + \frac{2n(D_{\text{cond}}/D_{\text{small}})}{\pi \nu \pi D_{\text{cond}}} + \frac{1}{2m_w \pi D_{\text{cond}}} \right)^{-1} \]

where the D_{small} is the inner diameter of inner tube (4.76mm), D_{outer} is the outer diameter of inner tube (6.35mm), L_{cond} is condenser length (5.5m), the mean water HTC (\bar{h}_w). The mean refrigerant HTC (\bar{h}_r) is calculated assuming that the enthalpy varies linearly with length and using the correlation of Gnielinski [92] for h_r if $i \geq i_v$ or $i \leq i_l$ and the correlation of Shah [95] if $i_l < i < i_v$. Shah [95] proposed the following equations for the flows regimes I, II and III:

\[h_l = h_{\text{ref}} (1 + \frac{3.8}{B^{0.95}} (\frac{h_{\text{ref}}}{140})^{0.0858+0.557p}) \]

\[h_{II} = h_l + h_{III} \]

\[h_{III} = 1.32R_{\text{L}}^{-1/3} \left(\frac{\nu L_f (\rho L - \rho V) \rho g k}{\nu L_f} \right)^{1/3} \]

The Nusselt numbers for laminar flow in annular regions are presented in Table 3 regarding the ratio between the inner tube outside diameter (D_{small}) and the outer tube inner diameter (D_{large}) [81, 93]. To evaluate the Nusselt number in ranges between the rows of Table 3 the EQ. 52 and 53 was fitted to the data with coefficient of determination (R^2) of 96.8% and 97.5%, respectively. For the turbulent flow in annular regions, Neils and Klein [82] recommend the use of EQ. 35 and 36 using the hydraulic diameter instead of the diameter.

\[\frac{D_{\text{small}}}{D_{\text{large}}} \]

\[\text{Uniform Temperature} \]

\[\text{Uniform Heat Flux} \]

\[Nu = 4.6005 \left(\frac{D_{\text{small}}}{D_{\text{small}}} \right)^{-0.464} \]

B is the liquid heat transfer coefficient calculated by EQ. 23 and R_{L} is calculated by EQ. 50. The ranges that occur the regime I and III are presented in Table 2. If the Regime is neither I nor III by the criteria below, it is considered Regime II. The Weber number (We_f) and dimensionless vapor velocity (v) are calculated by EQ. 27 and 51, respectively

\[We_f = \frac{G(1-x)\overline{D}_l}{\mu L} \]

\[v = \frac{4G}{(\rho L - \rho V) \mu L} \]

\[R_{\text{L}} = \frac{G(1-x)\overline{D}_l}{\mu L} \]
Kong et al. [44] recommend a heat leakage coefficient (ζ) of 95% to account for heat loss at the water tank and in the connecting tubes before and after the condenser.

\[\zeta = \frac{q_t}{q_{\text{cond}}} \]

(54)

2.4. Performance Indicators

Many authors [44, 49, 40] defined the coefficient of performance (COP) as follow:

\[\text{COP} = \frac{\zeta q_{\text{cond}}}{W} \]

(55)

To compare the accuracy of the model, the most used metrics are the Mean Absolute Deviation (MAD) and Mean Deviation (MD). For the COP, the MAD and MD are evaluated as showed in Eq. 56 and 57. The compressor outlet temperature (T₂) is calculated in a similar way.

\[\text{MAD} = \frac{1}{n} \sum_{j=1}^{n} \left| \frac{\text{COP}_{\text{calc}} - \text{COP}_{\text{exp}}}{\text{COP}_{\text{exp}}} \right| \]

(56)

\[\text{MD} = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{\text{COP}_{\text{calc}} - \text{COP}_{\text{exp}}}{\text{COP}_{\text{exp}}} \right) \]

(57)

2.5. Numerical Procedure

The pressure of the refrigerant is not known and cannot be obtained from the equations presented so far. An algorithm to calculate this pressure was presented by Kong et al. [44], but in this study, the author used a DX-SAHP with an immersed condenser, and the mass of refrigerant was an input of the mathematical model. A simplified algorithm explaining how these pressures were obtained is shown in Figure 2 for a heat pump with a coaxial condenser. The secant method mentioned in Figure 2 is described in detail by Chapra et al. [96]. The errors \(E_e \) and \(E_c \), in percent, is given by:

\[E_e = \left| \frac{q_{\text{e}} - q_{\text{calc}}}{q_{\text{e}}} \right| \cdot 100 \]

(58)

\[E_c = \left| \frac{\xi - \xi_{\text{calc}}}{\xi} \right| \cdot 100 \]

(59)

The final values for evaporating pressures were assumed as the initial guess for the next iteration to reduce the computational time. Bounds were set for the evaporating and condensing absolute pressures since the secant method can lead to negatives values. These details were described in the main program available in the Google Colaboratory through the link at the end of the paper. The Python code also includes compressor data for additional ecological refrigerants used in the study provided by Duarte [51], as well as the refrigerant charge calculation utilized in the model presented by Duarte [51]. Some of the correlations mentioned above were not programmed by the author but imported from the Python libraries published by Bell and Rutman [97] and Bell et al. [98].

Figure 2: Model calculation algorithm.
2.6. Uncertainty Analysis and Parallel Computing

To evaluate the uncertainty of mathematical model the most two methods used are the GUM method [21] and the Monte Carlo method [99]. Some authors shown that the uncertainty obtained by both method are similar [100, 101] and BIPM et al. [99] do not recommend the Monte Carlo method for complex models as that one presented in this article due the large computational time. The output variables of the DX-SAHP model were calculated considering the uncertainties from the input variables. The measurements involved in this work were considered random and uncorrelated, and evaluated according to BIPM et al. [21].

For example, the combined uncertainty of the sky temperature \(T_{sky} \), represented by \(t_{sky} \), and can be obtained using the Eq. 9 and 10 and the following equation:

\[
t_{sky} = \sqrt{\left(\frac{\partial T_{sky}}{\partial t_a} t_a \right)^2 + \left(\frac{\partial T_{sky}}{\partial T_d} t_{dp} \right)^2}
\]

(60)

Any other output variables were obtained using equations similarly to Eq. 60. Evidently, the partial derivatives can be obtained algebraically for the combined uncertainty of \(T_{sky} \), but for other output variables it may not be possible. In these cases, BIPM et al. [21] suggest a procedure using numerical methods:

\[
t_{dp} = \sqrt{\left(\frac{T_{sky}(T_a + T_{dp}) - T_{sky}(T_a - T_{dp})}{2} \right)^2 + \left(\frac{T_{sky}(T_a + T_d) - T_{sky}(T_a - T_d)}{2} \right)^2}
\]

(61)

where \(T_{sky}(T_a, T_{dp}) \) represents the numerical function used to calculate \(T_{sky} \) using as input variable \(T_a \) and \(T_{dp} \).

Despite the fact that the heat pump has components that work in parallel (evaporator, condenser, compressor, expansion device, etc) for the mathematical model the properties at the outlet of a component are necessary for the next component, in such a way, that there are no models in the consulted literature that use parallel processing to calculation of the model of a heat pump. In fact, to calculate the sky temperature with its respective uncertainty it is necessary to run the function that calculates the sky temperature five times, once to calculate the base result and four times to calculate uncertainty. Therefore, it is an opportunity to use parallel processing to speed up calculations involving a mathematical model. Figure 3 shows the algorithm used for parallel computation of uncertainty of \(T_{sky} \).

Before running all the simulations with all the correlations and all the experimental data, a set of simulations was made for a specific condition in order to determine which are the input variables whose uncertainties most significantly impact the output variables of the model. For example, the acceleration of gravity that was used in the model was \(9.7838163 \pm 0.0000004 \) measured at the university and presented by Soares [102]. The impacts of the uncertainty of the acceleration of gravity on the model output variables are negligible compared to their impacts of the uncertainties of the ambient temperature. Therefore, nine variables that significantly impact the model's output variables were used in the model's uncertainty analysis: ambient temperature, solar radiation, wind speed, atmospheric pressure, water temperature at the condenser inlet, water temperature at the condenser outlet, sky temperature, subcooling, and superheating. In the analysis of the uncertainty of the model, 19 parallel processes were used, 18 to calculate the uncertainty in one for the base result. In the next section, the time needed to carry out simulations with different software and different processing strategies will be compared, so the simulations were made in the computer whose specifications are shown in Table 4.

![Figure 3: Algorithm for parallel computation of uncertainty.](image-url)
3. RESULTS

3.1. Compressor Efficiency

The 18 data points of volumetric and global efficiency, calculated using the performance map provided by the compressor manufacturer, are shown in Figure 4 with their respective uncertainty (5%). The equation 62 and 63 were fitted to the data using standard tools and plotted in Figure 4. In these equations, P is the refrigerant pressure. The fitted curves pass through the uncertainty range of all data points.

$$\eta_v = -0.0143 \left(\frac{P_2}{P_1} \right)^2 + 0.915$$ \hspace{1cm} (62)

$$\eta_g = -0.0004 \left(\frac{P_2}{P_1} \right)^2 + 0.0104 \left(\frac{P_2}{P_1} \right) + 0.4839$$ \hspace{1cm} (63)

The coefficient of determination (R^2) for volumetric efficiency is 97.6% and for global efficiency is 94.4%. Additionally, the fitted curves pass through the uncertainty range of all data points. The MAD and MD of volumetric efficiency are respectively 0.05 % and 1.5 % and the MAD and MD of global efficiency are respectively -0.41% and 1.4%.

3.2. DX-SAHP Model Validation

The model validation was performed comparing the experimental results using a R134a DX-SAHP, presented in [103] and [51]. Experimental results are shown in the Table 5. During the experimental tests the subcooling was in the range of 6.5±1.4°C. In Table 5, the uncertainty in the water inlet temperature (T_{wi}), water outlet temperature (T_{wo}), ambient temperature (T_a) and compressor discharge temperature (T_2) was ±1°C, for dew point temperature (T_{dp}) was ±2°C, for the superheating at exit of evaporator (ΔT_{eh}) was ±1.4°C, for the atmospheric pressure was ±2kPa, for the solar radiation (I) was ±5% and for wind speed (u) was ±3%. Because tests one through five were conducted within the laboratory, the sky temperature was considered to be equal to the ambient temperature. The experiments six to ten were performed outside, therefore the sky temperature was calculated using the EQ. 9 and 10 and the combined uncertainty by EQ. 60. The experimental results used to validate the model present good accuracy, and an average of 5.2% of combined uncertainty for COP and 0.3% of uncertainty for discharge temperature.

Theoretical results are shown in the Table 6 and the comparison of theoretical and experimental results is shown in the Figure 5. The MD and MAD of COP of the simulation made in EES are respectively -2.0±1.7% and 3.2±1.7%. The MD and MAD of COP of the simulation made in Python are respectively 1.2±1.8% and 2.6±1.8%. Considering the uncertainty range, there is no meaningful difference of experimental COP

![Figure 4: Volumetric and global efficiency of the compressor.](image-url)
Table 5: Experimental Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Date</th>
<th>(T_u)</th>
<th>(P_{atm})</th>
<th>(T_{dp})</th>
<th>l</th>
<th>(u)</th>
<th>(T_{wi})</th>
<th>(T_{wo})</th>
<th>(\Delta T_{sh})</th>
<th>(T_2)</th>
<th>(T_{sky})</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/01</td>
<td>300.25</td>
<td>91.5</td>
<td>290.35</td>
<td>0</td>
<td>0</td>
<td>300.45</td>
<td>317.95</td>
<td>7.1</td>
<td>344.25</td>
<td>300.2±1.0</td>
<td>2.37±0.12</td>
</tr>
<tr>
<td>2</td>
<td>13/01</td>
<td>299.75</td>
<td>91.5</td>
<td>293.35</td>
<td>0</td>
<td>0</td>
<td>299.45</td>
<td>318.45</td>
<td>7.1</td>
<td>345.15</td>
<td>299.7±1.0</td>
<td>2.25±0.12</td>
</tr>
<tr>
<td>3</td>
<td>16/01</td>
<td>298.05</td>
<td>91.7</td>
<td>298.05</td>
<td>0</td>
<td>0</td>
<td>298.15</td>
<td>319.15</td>
<td>7.1</td>
<td>345.35</td>
<td>298.0±1.0</td>
<td>2.26±0.11</td>
</tr>
<tr>
<td>4</td>
<td>17/01</td>
<td>299.25</td>
<td>91.5</td>
<td>290.35</td>
<td>0</td>
<td>0</td>
<td>298.25</td>
<td>319.15</td>
<td>7.1</td>
<td>347.75</td>
<td>299.2±1.0</td>
<td>2.36±0.12</td>
</tr>
<tr>
<td>5</td>
<td>19/01</td>
<td>299.65</td>
<td>91.7</td>
<td>291.55</td>
<td>0</td>
<td>0</td>
<td>298.95</td>
<td>318.65</td>
<td>7.1</td>
<td>345.25</td>
<td>299.6±1.0</td>
<td>2.32±0.12</td>
</tr>
<tr>
<td>6</td>
<td>23/01</td>
<td>302.85</td>
<td>91.9</td>
<td>288.75</td>
<td>421</td>
<td>0.52</td>
<td>300.75</td>
<td>319.85</td>
<td>7.8</td>
<td>346.35</td>
<td>289.0±1.4</td>
<td>2.56±0.13</td>
</tr>
<tr>
<td>7</td>
<td>25/01</td>
<td>306.05</td>
<td>92.0</td>
<td>289.45</td>
<td>709</td>
<td>0.86</td>
<td>301.85</td>
<td>320.55</td>
<td>7.8</td>
<td>347.85</td>
<td>292.4±1.4</td>
<td>2.72±0.14</td>
</tr>
<tr>
<td>8</td>
<td>25/01</td>
<td>305.85</td>
<td>92.0</td>
<td>289.75</td>
<td>758</td>
<td>0.95</td>
<td>302.45</td>
<td>320.45</td>
<td>7.8</td>
<td>348.55</td>
<td>292.4±1.4</td>
<td>2.64±0.14</td>
</tr>
<tr>
<td>9</td>
<td>27/01</td>
<td>305.65</td>
<td>92.1</td>
<td>286.65</td>
<td>629</td>
<td>1.16</td>
<td>302.15</td>
<td>319.05</td>
<td>7.8</td>
<td>347.05</td>
<td>290.5±1.4</td>
<td>2.69±0.14</td>
</tr>
<tr>
<td>10</td>
<td>28/01</td>
<td>304.35</td>
<td>92.1</td>
<td>286.45</td>
<td>811</td>
<td>1.36</td>
<td>302.15</td>
<td>320.95</td>
<td>7.8</td>
<td>346.85</td>
<td>289.2±1.4</td>
<td>2.48±0.13</td>
</tr>
</tbody>
</table>

Table 6: Calculate Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Python COP</th>
<th>(T_2)</th>
<th>EES COP</th>
<th>(T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.29 ±0.04</td>
<td>336.7 ±1.5</td>
<td>2.23 ±0.04</td>
<td>337.6 ±1.5</td>
</tr>
<tr>
<td>2</td>
<td>2.31 ±0.04</td>
<td>336.4 ±1.5</td>
<td>2.24 ±0.04</td>
<td>337.2 ±1.4</td>
</tr>
<tr>
<td>3</td>
<td>2.30 ±0.04</td>
<td>335.8 ±1.4</td>
<td>2.24 ±0.04</td>
<td>336.5 ±1.4</td>
</tr>
<tr>
<td>4</td>
<td>2.30 ±0.04</td>
<td>335.9 ±1.4</td>
<td>2.25 ±0.04</td>
<td>336.7 ±1.4</td>
</tr>
<tr>
<td>5</td>
<td>2.31 ±0.04</td>
<td>336.1 ±1.5</td>
<td>2.25 ±0.04</td>
<td>336.9 ±1.4</td>
</tr>
<tr>
<td>6</td>
<td>2.55 ±0.05</td>
<td>342.3 ±1.4</td>
<td>2.47 ±0.05</td>
<td>344.0 ±1.4</td>
</tr>
<tr>
<td>7</td>
<td>2.73 ±0.06</td>
<td>347.4 ±1.5</td>
<td>2.62 ±0.05</td>
<td>350.0 ±1.5</td>
</tr>
<tr>
<td>8</td>
<td>2.75 ±0.06</td>
<td>348.3 ±1.6</td>
<td>2.63 ±0.05</td>
<td>351.0 ±1.5</td>
</tr>
<tr>
<td>9</td>
<td>2.70 ±0.06</td>
<td>345.7 ±1.4</td>
<td>2.60 ±0.05</td>
<td>348.1 ±1.5</td>
</tr>
<tr>
<td>10</td>
<td>2.76 ±0.06</td>
<td>348.7 ±1.6</td>
<td>2.64 ±0.05</td>
<td>351.4 ±1.5</td>
</tr>
</tbody>
</table>

and calculated COP for the simulation made in Python. The MD and MAD of compressor outlet temperature of the simulation made in EES are respectively 0.97±0.16% and 1.54±0.16%. The MD and MAD of compressor outlet temperature of the simulation made in Python are respectively -1.42±0.16% and 1.53±0.16%.

Only one point for COP using each programming platform (EES and Python) in Figure 5 is outside of the range of ±5%. This point represents the experimental test number 10. Comparing the experimental results in test number 10, the solar radiation, ambient temperature, and wind speed were higher than test 6 and the difference of outlet and inlet water temperature were lower than test number 6, so the COP found experimentally in test number 10 should be bigger than the COP of test 6. This large difference of experimental and theoretical COP for this point is probably due to a failure in the equipment or the measures during the experimental tests. Removing this point the maximum deviation are 3.8±1.8%, that is lower than the maximum deviation of the models presented by Chyng et al. [14], Moreno-Rodriguez et al. [45], Mohamed et al. [50], Duarte [51], Kong et al. [53] and Ma et al. [56].

For the COP, the uncertainty of the model was approximately three times lower than obtained experimentally. For the discharge temperature, the uncertainty of the model was 50% higher than that obtained experimentally. The higher uncertainty of the discharge temperature calculated by the model than the discharge temperature was also found in the study present by Duarte et al. [104].

With regard to the model uncertainties, for calculating the discharge temperature at outdoor conditions, the input variables that most contribute to this uncertainty are subcooling, superheating and solar radiation, contributing with the following percentages
Four hypotheses were tested. The correlations of Shah [87] (Eq. 19 to 22), Sun and Mishima [90] and Liu and Winterton [89] was used to calculate the convective and the correlation of Gnielinski [92] (Eq. 35) for single-phase flow. The detail description of correlations of Sun and Mishima [90] and Liu and Winterton [89] can be found in Bell and Rutman [97]. The last hypothesis is the same adopted by Deng and Yu [48] that assumed the thermal resistance for convection in the refrigerant side negligible. For calculating the convective heat transfer coefficient in the air five hypotheses were tested. Beyond the equations suggest by Neils and Klein [82] described in the Eq. 12 to 18, the empirical correlations developed in solar collectors and presented by Kumar and Mullick [105], Sharples and Charlesworth [106], Watmuff et al. [107] and McAdams [108] were used. These correlations are linear equations as a function of wind speed (u) and are presented in Table 7.

The mean deviations result for COP and discharge temperature using different correlations are shown in Table 7 and 8, with their respective uncertainties. For the combination of the hypotheses of Deng and Yu [48] and Kumar and Mullick [105] the mathematical model did not converge. Changes in the correlations for the

Table 7: Mean Deviation of COP using Different Correlation

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Cor. [87]</th>
<th>Cor. [48]</th>
<th>Cor. [90]</th>
<th>Cor. [89]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neils and Klein [82] (Eq. 12 to 18)</td>
<td>MD</td>
<td>1.2 ±1.8 %</td>
<td>1.6 ±1.8 %</td>
<td>0.9 ±1.8 %</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>2.6 ±1.8 %</td>
<td>2.7 ±1.8 %</td>
<td>2.6 ±1.8 %</td>
</tr>
<tr>
<td>Kumar and Mullick [105]</td>
<td>MD</td>
<td>3.9 ±1.8 %</td>
<td>-</td>
<td>3.5 ±1.8 %</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>3.9 ±1.8 %</td>
<td>-</td>
<td>3.6 ±1.8 %</td>
</tr>
<tr>
<td>Sharples and Charlesworth [106]</td>
<td>MD</td>
<td>4.4 ±1.8 %</td>
<td>4.9 ±1.8 %</td>
<td>4.0 ±1.8 %</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>4.4 ±1.8 %</td>
<td>4.9 ±1.8 %</td>
<td>4.0 ±1.8 %</td>
</tr>
<tr>
<td>Watmuff et al. [107]</td>
<td>MD</td>
<td>1.3 ±1.8 %</td>
<td>1.7 ±1.8 %</td>
<td>1.0 ±1.8 %</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>3.0 ±1.8 %</td>
<td>3.2 ±1.8 %</td>
<td>3.0 ±1.8 %</td>
</tr>
<tr>
<td>McAdams [108]</td>
<td>MD</td>
<td>3.2 ±1.8 %</td>
<td>3.7 ±1.8 %</td>
<td>2.8 ±1.8 %</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>3.5 ±1.8 %</td>
<td>3.9 ±1.8 %</td>
<td>3.4 ±1.8 %</td>
</tr>
</tbody>
</table>
Table 8: Mean Deviation of Discharge Temperature using Different Correlation

<table>
<thead>
<tr>
<th></th>
<th>Cor. [87]</th>
<th>Cor. [48]</th>
<th>Cor. [90]</th>
<th>Cor. [89]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neils and Klein [82]</td>
<td>MD: -1.42±0.16 %</td>
<td>MD: -1.38±0.16 %</td>
<td>MD: -1.45±0.16 %</td>
<td>MD: -1.42±0.16 %</td>
</tr>
<tr>
<td>(Eq. 12 to 18)</td>
<td>MAD: 1.53±0.16 %</td>
<td>MAD: 1.50±0.16 %</td>
<td>MAD: 1.56±0.16 %</td>
<td>MAD: 1.53±0.16 %</td>
</tr>
<tr>
<td>Kumar and Mullick [105]</td>
<td>MD: -1.12±0.16 %</td>
<td>MAD: -1.17±0.16 %</td>
<td>MD: -1.11±0.16 %</td>
<td></td>
</tr>
<tr>
<td>h = 6.9 + 3.87u</td>
<td>MAD: -1.37±0.16 %</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sharples and Charlesworth [106]</td>
<td>MD: -1.08±0.16 %</td>
<td>MD: -1.01±0.16 %</td>
<td>MD: -1.12±0.16 %</td>
<td></td>
</tr>
<tr>
<td>h = 8.3 + 2.2u</td>
<td>MAD: 1.32±0.16 %</td>
<td>MAD: 1.32±0.16 %</td>
<td>MAD: 1.34±0.16 %</td>
<td></td>
</tr>
<tr>
<td>Watmuff et al. [107]</td>
<td>MD: -1.37±0.16 %</td>
<td>MD: -1.33±0.16 %</td>
<td>MD: -1.41±0.16 %</td>
<td></td>
</tr>
<tr>
<td>h = 2.8 + 3u</td>
<td>MAD: 1.52±0.16 %</td>
<td>MAD: 1.52±0.16 %</td>
<td>MAD: 1.52±0.16 %</td>
<td></td>
</tr>
<tr>
<td>McAdams [108]</td>
<td>MD: -1.19±0.16 %</td>
<td>MD: -1.13±0.16 %</td>
<td>MD: -1.23±0.16 %</td>
<td></td>
</tr>
<tr>
<td>h = 5.7 + 3.8u</td>
<td>MAD: 1.41±0.16 %</td>
<td>MAD: 1.41±0.16 %</td>
<td>MAD: 1.43±0.16 %</td>
<td></td>
</tr>
</tbody>
</table>

rerefrigerant did not affect the results if the range of uncertainty is considered, but the correlation for the airside affects strongly the results in both cases. None of the 20 combinations of correlations affected the uncertainty of the MAD and MD. Considering the absolute values, the use of correlation of Sun and Mishima [90] instead of Shah [87] reduces in 0.3% the MD for COP increases only 0.03% the MAD and MD. Additionally, the correlation of Sun and Mishima [90] calculate the average boiling heat transfer coefficient during and Shah [87] local boiling heat transfer coefficient, therefore a numerical integration is required. Finally, the use of correlation of Sun and Mishima [90] instead of Shah [87] reduces the computational time to run in all the simulations listed in Table 5 in 10%. For minimizing the mean difference of discharge temperature another pair of correlations should be chosen.

3.4. Parallel Computing

The CPU utilization on the computer during the first sixty seconds of simulations is shown in Figure 6 considering the simulations in the EES, Python and Python with parallel computing (PPC). Although the Figure 6 does not show the CPU usage during the entire simulation in the remaining time of the simulation the pattern of CPU utilization remained the same as shown in Figure 6. Simulations using EES and Python without parallel computing are not able to take advantage of all available computer resources and it is possible to see that during almost the entire simulation the CPU usage is around 8-12%, which approximately represents the resource of one core of the CPU. On the other hand, simulations with python and parallel processing use most of the time and all resources available on the computer. There are some valleys in Figure 6 where the CPU utilization drops to approximately 30% which represents the moment which the parallel processing has ended and a CPU is gathering the results of that simulation and preparing new simulations for the parallel processing. The total simulation times to perform the calculations involving a set of correlations is shown in Figure 7 using the different strategies and software mentioned above. Using python with parallel processing reduced the simulation time by 88% compared to the EES simulation time.

![Figure 6: CPU utilization during the first sixty seconds of the simulation.](image-url)
Figure 7: Total time of simulation.

The Python code that can be found in the link at the end of the paper not only presents the mathematical model of the heat pump, but also a series of functions that can be used in different models and problems involving thermodynamic, heat transfer and fluid. Finally, a generalized function to calculate uncertainty using parallel processing any mathematical model in Python is also presented. The function for calculating uncertainty using parallel processing was validated comparing the uncertainty results with the native functionality of EES for calculating uncertainty. This comparison was not only made with the mathematical model presented in this study, but with other simple

<table>
<thead>
<tr>
<th>Greek Symbols</th>
<th>L</th>
<th>Length [m]</th>
<th>ε</th>
<th>expansion valve inlet or condenser outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>coefficient of thermal expansion [K⁻¹]</td>
<td>E</td>
<td>error [%]</td>
<td>4</td>
</tr>
<tr>
<td>δ</td>
<td>fin thickness [m]</td>
<td>MAD</td>
<td>mean absolute deviation</td>
<td>a</td>
</tr>
<tr>
<td>ε</td>
<td>rugosity [m]</td>
<td>MD</td>
<td>mean absolute deviation</td>
<td>calc</td>
</tr>
<tr>
<td>η</td>
<td>efficiency</td>
<td>n</td>
<td>rotation speed [s⁻¹]</td>
<td>ch</td>
</tr>
<tr>
<td>μ</td>
<td>viscosity [Pa.s]</td>
<td>NTU</td>
<td>number of transfer units</td>
<td>col</td>
</tr>
<tr>
<td>ρ</td>
<td>mass density [kg.m⁻³]</td>
<td>p</td>
<td>pressure [Pa]</td>
<td>cond</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant [W.m⁻²K⁻⁴]</td>
<td>p</td>
<td>reduced pressure</td>
<td>crit</td>
</tr>
<tr>
<td>σ'</td>
<td>surface tension [N.m⁻¹]</td>
<td>q</td>
<td>heat flux [W.m⁻²]</td>
<td>dp</td>
</tr>
<tr>
<td>θ</td>
<td>inclination of collector [rad]</td>
<td>S</td>
<td>net radiation absorbed per unit of area [W.m⁻²]</td>
<td>ev</td>
</tr>
<tr>
<td>ε</td>
<td>emissivity</td>
<td>T</td>
<td>temperature [K]</td>
<td>exp</td>
</tr>
<tr>
<td>ξ</td>
<td>effectiveness</td>
<td>t</td>
<td>temperature uncertainty [K']</td>
<td>g</td>
</tr>
<tr>
<td>ξ'</td>
<td>effectiveness</td>
<td>U</td>
<td>overall heat transfer coefficient [W.m⁻²K⁻¹]</td>
<td>l</td>
</tr>
<tr>
<td>ζ</td>
<td>heat leakage coefficient</td>
<td>u</td>
<td>wind velocity [m.s⁻¹]</td>
<td>i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latin Symbols</th>
<th>V</th>
<th>volume [m³]</th>
<th>11</th>
<th>flow regime II during condensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>heat capacity rate [W.K⁻¹]</td>
<td>v</td>
<td>vapor velocity [dimensionless]</td>
<td>ii</td>
</tr>
<tr>
<td>m</td>
<td>mass flow rate [kg.s⁻¹]</td>
<td>W</td>
<td>distance between the tubes [m]</td>
<td>111</td>
</tr>
<tr>
<td>Q</td>
<td>heat transfer rate [W]</td>
<td>x</td>
<td>vapor quality</td>
<td>yo</td>
</tr>
<tr>
<td>W</td>
<td>power [W]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classical dimensionless numbers

<table>
<thead>
<tr>
<th>A</th>
<th>area [m²]</th>
<th>Bo</th>
<th>Boiling</th>
<th>lo</th>
<th>Liquid only</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>absorptivity</td>
<td>Co</td>
<td>Convection</td>
<td>o</td>
<td>outer</td>
</tr>
<tr>
<td>B</td>
<td>auxiliary variable</td>
<td>f</td>
<td>Darcy friction factor</td>
<td>oi</td>
<td>inner tube outside geometry</td>
</tr>
<tr>
<td>C</td>
<td>heat capacity at constant pressure [J.kg⁻¹K⁻¹]</td>
<td>Fr</td>
<td>Froude</td>
<td>oo</td>
<td>outer tube outside geometry</td>
</tr>
<tr>
<td>COP</td>
<td>coefficient of performance</td>
<td>Nu</td>
<td>Nusselt</td>
<td>po</td>
<td>pool boiling correlation</td>
</tr>
<tr>
<td>D</td>
<td>diameter [m]</td>
<td>Pe</td>
<td>Péclet</td>
<td>r</td>
<td>refrigerant</td>
</tr>
<tr>
<td>F</td>
<td>fin efficiency factor</td>
<td>Pr</td>
<td>Prandtl</td>
<td>s</td>
<td>swept volume</td>
</tr>
<tr>
<td>F'</td>
<td>collector efficiency factor</td>
<td>Ra</td>
<td>Rayleigh</td>
<td>sky</td>
<td>sky</td>
</tr>
<tr>
<td>G</td>
<td>mass velocity [kg.m⁻²s⁻¹]</td>
<td>Re</td>
<td>Reynolds</td>
<td>t</td>
<td>tank</td>
</tr>
<tr>
<td>g</td>
<td>gravity [m.s⁻²]</td>
<td>We</td>
<td>Weber</td>
<td>V</td>
<td>vapor</td>
</tr>
<tr>
<td>h</td>
<td>convective coefficient [W.m⁻²K⁻¹]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscripts</td>
<td></td>
<td>vol</td>
<td>volumetric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>solar radiation intensity [W.m⁻²]</td>
<td>1</td>
<td>compressor inlet or evaporator outlet</td>
<td>w</td>
<td>water</td>
</tr>
<tr>
<td>i</td>
<td>specific enthalpy [J.kg⁻¹]</td>
<td>2</td>
<td>compressor outlet or condenser inlet</td>
<td>wi</td>
<td>water inlet</td>
</tr>
<tr>
<td>k</td>
<td>thermal conductivity [W.m⁻¹K⁻¹]</td>
<td>2s</td>
<td>compressor outlet considering an isentropic process</td>
<td>wo</td>
<td>water outlet</td>
</tr>
</tbody>
</table>
functions such as the equation for calculating the experimental COP.

4. CONCLUSIONS

A mathematical model of an R134a DX-SAHP for generating residential hot water was utilized in this study to evaluate the performance of simulation findings with practical observations. The theoretical and actual compressor discharge temperature and COP were evaluated using ten experimental experiments performed in various climatic conditions. The following key findings were reached:

- The difference between the results using EES and using Python was small 1.4%. Since in both approaches the same equations were utilized, the difference in the results is probably related to the refrigeration fluid properties library employed in each platform.

- The mean deviation between experimental and theoretical results can be minimized if different correlations are chosen. The use of the correlation proposed by un and Mishima [90] instead of Shah [87] reduced in 0.3% the MD for COP.

- The correlations for convective heat transfer coefficient considered in this work had no effect in the uncertainty of the model.

- The correlation for convective heat transfer coefficient for the airside in the evaporator/solar collector had more influence on the results than the correlation for the refrigerant side.

- The use of Python with parallel computing, for uncertainty analyses, reduced the simulation time in 88%.

- The input variables uncertainty that has more impact in the uncertainty of output variables are subcooling and superheating.

5. ACKNOWLEDGEMENTS

This work was supported by Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and National Council for Scientific and Technological Development (CNPq). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. Link to Python model: https://colab.research.google.com/drive/1RpAE8mSTS6zsrCTS16TnYEztlAhgEyxU?usp=sharing

REFERENCES

