Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Structures and Electronic Properties of Different ZnIn2S4/CuInS2 Interface: A First-Principles Study

DOI
https://doi.org/10.31875/2410-2199.2025.12.04
Published
2025-05-27

Abstract

This paper aims to explore the electronic and photoelectric properties of two-dimensional type I (straddle) heterojunctions by theoretical calculation, and to provide theoretical support for the design of novel optoelectronic devices. Several ZnIn2S4/CuInS2 two-dimensional type I heterojunctions with different terminations have been systematically investigated by density functional theory (DFT) combined with tight binding approximation. The results show that only two of these structures are stable. In these two stable structures, different chemical bonds and electron transfer directions are formed when different atoms are exposed at the interface. The calculation results of band structures show that both of these structures are two-dimensional type I heterojunctions. The calculation results of effective mass show that they have efficient carrier separation and transport characteristics. These properties indicate that these two heterostructures can be used in high-performance light-emitting devices and photoelectric sensors. This study provides a theoretical basis for the optimal design of new two-dimensional optoelectronic devices.

References

  1. Li, X.Y. Guo, X.M. Hu, W. Wang, Y.Y. Tai, M. Xie, Z. Li, S.L. Zhang, Realization of multifunction in perovskite-based van der Waals heterostructure by interface engineering strategy: The case of CsPbBr3/Janus MoSSe, J. Appl. Surf. Sci. 618 (2023) 156626. https://doi.org/10.1016/j.apsusc.2023.156626
  2. Y. Kumar, R. Kumar, P.K. Raizadaa, A.A.P. Khanc, Q.Y. Van Le, P. Singha, V.H. Nguyene, Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives, J. J. Mater. Sci. Technol. 87 (2021) 234-257. https://doi.org/10.1016/j.jmst.2021.01.051
  3. H.R. Zhang, M.Y. Cui, Y.J. Lv, Y.F. Rao, Y. Huang, A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies, J. Chinese Chem Lett. 2024 110108. https://doi.org/10.1016/j.cclet.2024.110108
  4. G.P. Zhang, H. Wu, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application, J. GEE. 7 (2022) 176-204. https://doi.org/10.1016/j.gee.2020.12.015
  5. J. Wang, S.J. Sun, R. Zhou, Y.Z. Li, Z.T. He, H. Ding, D.M. Chen, W.H. Ao, A review: Synthesis, modification and photocatalytic applications of ZnIn2S4, J. Mater. Sci. Technol. 78 (2021) 1-19. https://doi.org/10.1016/j.jmst.2020.09.045
  6. M.Q. Xu, R. Zhang, J. He, Z.Y. Chen, J.C. Jiang, Z.X. Li, Y.J. Liu, D. Chen, Y.H. Ma, Construction of heterojunctions with in situ growth of ZnIn2S4 nanosheets on the surface of atomically dispersed Cu-modified MOFs for high-performance visible-light photocatalytic antibiotic degradation, J. Sep Purif Technol. 354 (2025) 129093. https://doi.org/10.1016/j.seppur.2024.129093
  7. X. Wang, N. Zhang, F. Zhao, X.C. Zhang, W.L. Wu, Y.H. Wang, Hollow Zn0.01Co0.99 Se2/ZnIn2S4 Z-scheme heterogeneous photocatalyst with Strong internal electric field and Excellent surface electron transfer capability for Efficient Hydrogen Production, Ceram Int. 49 (2023) 30744-30754. https://doi.org/10.1016/j.ceramint.2023.07.030
  8. S.T. Liu, L. Wu, L.S. Zhao, A photoelectrochemical platform constructed with C-doped ZnIn2S4/Bi2S3: Excellent for the visual detection of tumor marker, Electrochem Acta. 491 (2024) 144328. https://doi.org/10.1016/j.electacta.2024.144328
  9. L.G. Ma, Y.H. Ding, C. Lin, Y.Q. Yang, L. Xu, H. Qiu, H.L. Jiang, X. Song, X.Q. Ai, ZnIn2S4 nanostructure grown on electronegative h-BN for highly efficient photocatalytic hydrogen evolution, Int J Hydrogen Energ. 83 (2024) 553-562. https://doi.org/10.1016/j.ijhydene.2024.08.132
  10. X.J. Feng, H.S. Shang, J.L. Zhou, X.K. Ma, X.Y. Gao, D. Wang, B. Zhang, Y.F. Zhao, Heterostructured core-shell CoS1.097@ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution under visible light, Chem. Eng. J. 457 (2023) 141192. https://doi.org/10.1016/j.cej.2022.141192
  11. H.L. Ding, Y.X. Feng, Y.F. Xu, X.D. Xue, R. Feng, T. Yan, L.G. Yan, Q. Wei, Self-powered photoelectrochemical aptasensor based on MIL-68(In) derived In2O3 hollow nanotubes and Ag doped ZnIn2S4 quantum dots for oxytetracycline detection, Talanta. 240 (2022) 123153. https://doi.org/10.1016/j.talanta.2021.123153
  12. M. Zhang, M. Arif, Y.Y. Dong, X.B. Chen, X.H. Liu, Z-scheme TiO2-x @ ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics, J. Colloid Surface A. 649 (2022) 129530. https://doi.org/10.1016/j.colsurfa.2022.129530
  13. L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, CulnS2 thin films: Preparation and properties, J. Appl. Phys. 46 (1975) 4865-4869. https://doi.org/10.1063/1.321521
  14. K.O. Joanna, W. Horst, Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals, J. ACS Appl. Mater. Interfaces. 5 (2013) 12221-12237. https://doi.org/10.1021/am404084d
  15. S. Kaowphonga, W. Choklapa, A. Chachvalvutikula, N. Chandeta, A novel CuInS2/m-BiVO4 p-n heterojunction photocatalyst with enhanced visible-light photocatalytic activity, J. Colloid Surface A. 579 (2019) 123639. https://doi.org/10.1016/j.colsurfa.2019.123639
  16. Z.J. Guan, J.W. Pan, Q.Y. Li, G.Q. Li, J.J. Yang, Boosting Visible-Light Photocatalytic Hydrogen Evolution with an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction, J. ACS Sustainable Chem. Eng. 7 (2019) 7736-7742. https://doi.org/10.1021/acssuschemeng.8b06587
  17. X.K. Xiang, M. Zhang, Q.T. Huang, Y. Mao, J.H. Jia, X.T. Zeng, Y.Y. Dong, J.M. Liao, X.B. Chen, X.X. Yao, Q.F. Zheng, W. Chen, Construction of S-scheme CuInS2/ZnIn2S4 heterostructures for enhanced photocatalytic activity towards Cr(VI) removal and antibiotics degradation, J. Chemosphere. 352 (2024) 141351. https://doi.org/10.1016/j.chemosphere.2024.141351
  18. V.V. Bozhko, A.V. Novosad, G.E. Davidyuk, V.R. Kozer, O.V. Parasyuk, N. Vainorius, V. Janonis, A. Sakavic, A. Sakavicius, V. Kazukauskas, Electrical and photoelectrical properties of CuInS2-ZnIn2S4 solid solutions, J. Alloy Compd. 553 (2013) 48-52. https://doi.org/10.1016/j.jallcom.2012.10.134
  19. F.Y. Li, B.Y. Liao, J.N. Shen, J.N. Ke, R.X. Zhang, Y.Q. Wang, Y. Niu, Enhancing Photocatalytic Activities for Sustainable Hydrogen Evolution on Structurally Matched CuInS2/ZnIn2S4 Heterojunctions. J. Molecules. 29 (2024) 2447. https://doi.org/10.3390/molecules29112447
  20. B. Diola, Understanding density functional theory (DFT) and completing it in practice, J. AIP Adv. 4 (2014) 127104. https://doi.org/10.1063/1.4903408
  21. K. Burke, L. O. Wagner, DFT in a Nutshell, Int J Quantum Chem. 113 (2013) 30744-30754. https://doi.org/10.1002/qua.24411
  22. V. Wang, N. Xu, J. C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code, Comput Phys Comm. 267 (2021) 108033. https://doi.org/10.1016/j.cpc.2021.108033
  23. S.Q. Liu, Y.B. Li, Z.M. Yang, H.Q. Tian, J.M. Liu, Reduced partition function ratios of iron, magnesium, oxygen, and silicon isotopes in olivine: A GGA and GGA + U study, J. Geochim Cosmochim AC. 384 (2024) 111-127. https://doi.org/10.1016/j.gca.2024.09.017
  24. M.A. Majeed Khana, S. Kumarb, M.S. Alsalhia, M. Ahameda, M. Alhoshana, S.A. Alrokayana, T. Ahamade, Morphology and non-isothermal crystallization kinetics of CuInS2 nanocrystals synthesized by solvo-thermal method, J. Mater Charact. 65 (2012) 109 - 114. https://doi.org/10.1016/j.matchar.2012.01.009
  25. J.A.F. Ramos,V. Soto, J.A.L. Ceron, M.O.V. Lepe, R.F. Moreno, Measurement of core electron binding energies of silver nanoparticles and their modeling with electron propagator calculations of silver clusters, J. Inorg Chim Acta, 573 (2024) 122338. https://doi.org/10.1016/j.ica.2024.122338
  26. A. Kachu, S. Vemula, N.R. Chebrolu, A. Boda, Role of confinement shape and spin-orbit interactions on binding energy, temperature, transition energy, susceptibility and oscillator strength of an off-center D0 impurity in a GaAs quantum dot, J. Physica B, 693 (2024) 416376. https://doi.org/10.1016/j.physb.2024.416376
  27. H. Lu, J.T. Yu, Q.W. Zhang, J.A. Zhang, C. Zhang, Q.Y. Bi, Data-driven deep learning prediction of boron-doped graphene work function, J. Mater Today Commun, 40 (2024) 109924. https://doi.org/10.1016/j.mtcomm.2024.109924
  28. Y.T. Chen, Q. Sun, Z.G. Ni, X.W. Tu, C. Sun, S.X. Zhu, X.F. Duan, M. Jiang, Z.J. Xie, M. Liu, H. Zheng, High-efficient solar-driven nitrogen fixation by modulating the internal electric-field of MOFs via n-site-enhanced charge density difference in organic ligands, Chem Eng J, 482 (2024) 148853. https://doi.org/10.1016/j.cej.2024.148853
  29. M. Wolloch, G. Levita, P. Restuccia, M.C. Righi, Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces, J. Phys. Rev. Lett. 121 (2018) 026804. https://doi.org/10.1103/PhysRevLett.121.026804
  30. B.J. Ransil, J.J. Sinai, Toward a Charge‐Density Analysis of the Chemical Bond: The Charge‐Density Bond Model, J. Chem. Phys. 46 (1967) 4050-4074. https://doi.org/10.1063/1.1840487
  31. R.F. Nalewajski, A.M. Koster, S. Escalante, Electron Localization Function as Information Measure, J. Phys. Chem. 109 (2005) 10038-10043. https://doi.org/10.1021/jp053184i
  32. T. Lu, F.W. Chen, Meaning and Functional Form of the Electron Localization Function, J. Acta Phys. Chim. Sin. 27 (2011) 2786-2792. https://doi.org/10.3866/PKU.WHXB20112786
  33. M. Kohout, F.R. Wagner, Y. Grin, Electron localization function for transition-metal compounds, J. Theor Chem Acc. 108 (2002) 150-156. https://doi.org/10.1007/s00214-002-0370-x
  34. J. Poater, M. Duran, M. Sola, B. Silvi, Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches, J. Chem. Rev. 105 (2005) 3911−3947. https://doi.org/10.1021/cr030085x
  35. M. Yu, D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration, J. Chem. Phys. 134 (2011) 064111. https://doi.org/10.1063/1.3553716
  36. N.M. Rasi, S. Ponnurangam, N. Mahinpey, First-principles investigations into the effect of oxygen vacancies on the enhanced reactivity of NiO via Bader charge and density of states analysis, J. Catal. Today. 407 (2023) 172-181. https://doi.org/10.1016/j.cattod.2022.01.012
  37. S. Ali, P.M. Ismail, H.H. Shen, A. Zada, A. Ali, I. Ahmad, R. Shah, I. Khan, J.S. Chen, C.H. Cui, X.Q. Wu, Q.Q. Kong, J.B. Yi, X.T. Zu, H.Y. Xiao, F.Z. Raziq, L. Qiao, Synthesis and bader analyzed cobalt-phthalocyanine modified solar UV-blind β-Ga2O3 quadrilateral nanorods photocatalysts for wide-visible-light driven H2 evolution, J. Appl. Catal., B-Environ. 307 (2022) 121149. https://doi.org/10.1016/j.apcatb.2022.121149
  38. S.Barnetta, D. Allana, M. Gutmannc, J.K. Cockcroftb, V.H. Maid, A.E. Alievb, J. Saßmannshausen, Combined high resolution X-ray and DFT Bader analysis to reveal a proposed Ru-H⋯Si interaction in Cp(IPr)Ru(H)2SiH(Ph)Cl, Inorg Chem Aata. 488 (2019) 292-298. https://doi.org/10.1016/j.ica.2019.01.034
  39. H.P. Beck, A DFT study on the correlation between topology and Bader charges: Part V, on the correlation between interatomic distances and Bader charges in the structures of TinOm compounds A comment on the “charge and size concept” in crystal chemistry, J. Solid State Sci. 67 (2017) 85-92. https://doi.org/10.1016/j.solidstatesciences.2017.03.010
  40. Q.S. Zeng, H. Wang, W. Fu, Y.J. Gong, W. Zhou, P.M. Ajayan, J. Lou, Z. Liu, Band Engineering for Novel Two-Dimensional Atomic Layers, J. 2D Mater. 16 (2015) 1868-1884. https://doi.org/10.1002/smll.201402380
  41. T.A. Shifa, F.M. Wang, Y. Liu, J. He, Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis, J. Adv. Mater. 31 (2019) 1804828. https://doi.org/10.1002/adma.201804828
  42. T.M. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, N. Ivanov, H.B. Ji, Z.Z. Qin, Z.L. Wu, 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution, J. Nanoscale. 11 (2019) 8051-8628. https://doi.org/10.1039/C9NR90098E
  43. Y. Yua, H.D. Xiong, K. Eshuna, H. Yuan, Q.L. Li, Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain, J. Appl Surf Sci, 325 (2015) 27-32. https://doi.org/10.1016/j.apsusc.2014.11.079
  44. A. Raghav, K. Hongo, R. Maezono, E. Panda, Electronic structure and effective mass analysis of doped TiO2 (anatase) systems using DFT+U, J. Comp Mater Sci, 214 (2022) 111714. https://doi.org/10.1016/j.commatsci.2022.111714