Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 No. 1 (2022)

Structural Modeling and Thermal Conductivity of Graphite Film Reinforced Aluminum Matrix Laminated Composites

DOI
https://doi.org/10.31875/2410-4701.2022.09.04
Submitted
December 8, 2022
Published
2022-12-08

Abstract

Abstract: Excellent thermal conductivities of thermal management materials are expected to ensure the timely heat dissipation in lots of engineering applications and electronic devices. High in-plane thermal conductivity of laminated composites has become increasing significant for high energy and power density electronic devices. In this study, the continuous graphite film/aluminum (Gr film/Al) laminated composites were fabricated by vacuum hot pressing. In-plane and out-of-plane thermal conductivity of Gr film/Al laminated composites are tested. Two-dimensional structural models of Gr film/Al laminated composites are established, in which volume fraction, interfacial property, punching zone and orientation angle of Gr films can be controlled according to their actual composite microstructures. The effects of volume fraction and interfacial property on the thermal conductivity of Gr film/Al laminated composites are investigated. Two ways to reduce anisotropy of thermal conductivity are introduction of punching zones and control of Gr orientation, which are verified to be effective. On basis of the analysis above, a good understanding can be brought out for extensive thermal management applications of Gr/Al composites.

References

  1. Mallik, S.; Ekere, N.; Best, C.; Bhatti, R., Investigation of thermal management materials for automotive electronic control units. Applied Thermal Engineering 2011, 31, (2-3), 355-362. https://doi.org/10.1016/j.applthermaleng.2010.09.023
  2. McNamara, A. J.; Joshi, Y.; Zhang, Z. M., Characterization of nanostructured thermal interface materials - A review. International Journal of Thermal Sciences 2012, 62, 2-11. https://doi.org/10.1016/j.ijthermalsci.2011.10.014
  3. Prieto, R.; Molina, J. M.; Narciso, J.; Louis, E., Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Materialia 2008, 59, (1), 11-14. https://doi.org/10.1016/j.scriptamat.2008.02.026
  4. Moridi, A.; Zhang, L.; Liu, W.; Duvall, S.; Brawley, A.; Jiang, Z.; Yang, S.; Li, C., Characterisation of high thermal conductivity thin-film substrate systems and their interface thermal resistance. Surface and Coatings Technology 2018, 334, 233-242. https://doi.org/10.1016/j.surfcoat.2017.11.021
  5. Bakshi, S. R.; Lahiri, D.; Agarwal, A., Carbon nanotube reinforced metal matrix composites - a review. International Materials Reviews 2013, 55, (1), 41-64. https://doi.org/10.1179/095066009X12572530170543
  6. Han, H.; Zhang, Y.; Wang, N.; Samani, M. K.; Ni, Y.; Mijbil, Z. Y.; Edwards, M.; Xiong, S.; Saaskilahti, K.; Murugesan, M.; Fu, Y.; Ye, L.; Sadeghi, H.; Bailey, S.; Kosevich, Y. A.; Lambert, C. J.; Liu, J.; Volz, S., Functionalization mediates heat transport in graphene nanoflakes. Nat Commun 2016, 7, 11281. https://doi.org/10.1038/ncomms11281
  7. Zhong, J.; Liu, D.; Li, Z.; Sun, X., High thermal conductivity materials and their application on the electronic products. 2012 IEEE Asia-Pacific Conference on Antennas and Propagation 2012. https://doi.org/10.1109/APCAP.2012.6333195
  8. Lin, S.; Ju, S.; Zhang, J.; Shi, G.; He, Y.; Jiang, D., Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Advances 2019, 9, (3), 1419-1427. https://doi.org/10.1039/C8RA09376H
  9. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C., Ultrahigh Thermal Conductive yet Superflexible Graphene Films. Adv Mater 2017, 29, (27). https://doi.org/10.1002/adma.201700589
  10. Hu, D.; Gong, W.; Di, J.; Li, D.; Li, R.; Lu, W.; Gu, B.; Sun, B.; Li, Q., Strong graphene-interlayered carbon nanotube films with high thermal conductivity. Carbon 2017, 118, 659-665. https://doi.org/10.1016/j.carbon.2017.04.005
  11. Gspann, T. S.; Juckes, S. M.; Niven, J. F.; Johnson, M. B.; Elliott, J. A.; White, M. A.; Windle, A. H., High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 2017, 114, 160-168. https://doi.org/10.1016/j.carbon.2016.12.006
  12. Murakami, M.; Tatami, A.; Tachibana, M., Fabrication of high quality and large area graphite thin films by pyrolysis and graphitization of polyimides. Carbon 2019, 145, 23-30. https://doi.org/10.1016/j.carbon.2018.12.057
  13. Hutsch, T.; Schubert, T.; Schmidt, J.; Weißgärber, T.; Kieback, B., Innovative metal-graphite composites as thermally conducting materials. PM2010 World Congress, PM Functional Materials-Heat Sinks 2010, 1-8.
  14. Li, W.; Liu, Y.; Wu, G., Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon 2015, 95, 545-551. https://doi.org/10.1016/j.carbon.2015.08.063
  15. Zhou, C.; Ji, G.; Chen, Z.; Wang, M.; Addad, A.; Schryvers, D.; Wang, H., Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Materials & Design 2014, 63, 719-728. https://doi.org/10.1016/j.matdes.2014.07.009
  16. Chang, J.; Zhang, Q.; Lin, Y.; Wu, G., Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications. Journal of Alloys and Compounds 2018, 742, 601-609. https://doi.org/10.1016/j.jallcom.2018.01.332
  17. Xue, C.; Bai, H.; Tao, P. F.; Wang, J. W.; Jiang, N.; Wang, S. L., Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface. Materials & Design 2016, 108, 250-258. https://doi.org/10.1016/j.matdes.2016.06.122
  18. Huang, Y.; Ouyang, Q.; Guo, Q.; Guo, X.; Zhang, G.; Zhang, D., Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials & Design 2016, 90, 508-515. https://doi.org/10.1016/j.matdes.2015.10.146
  19. Landry, K.; Kalogeropoulou, S.; Eustathopoulos, N., Wettability of carbon by aluminum and aluminum alloy. Materials Science and Engineering A 1998, 254, 99-111. https://doi.org/10.1016/S0921-5093(98)00759-X
  20. Cao, H.; Tan, Z.; Lu, M.-H.; Ji, G.; Yan, X.-J.; Di, C.; Yuan, M.; Guo, Q.; Su, Y.; Addad, A.; Li, Z.; Xiong, D.-B., Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying. Carbon 2019, 150, 60-68. https://doi.org/10.1016/j.carbon.2019.05.004
  21. Qian, L.; Pang, X.; Zhou, J.; Yang, J.; Lin, S.; Hui, D., Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials. Composites Part B: Engineering 2017, 116, 291-297. https://doi.org/10.1016/j.compositesb.2016.10.067
  22. Huang, Y.; Su, Y.; Li, S.; Ouyang, Q.; Zhang, G.; Zhang, L.; Zhang, D., Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity. Composites Part B: Engineering 2016, 107, 43-50. https://doi.org/10.1016/j.compositesb.2016.09.051