Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Retrospect on the Preparation and Application of Perovskite Materials

DOI
https://doi.org/10.31875/2410-2199.2025.12.05
Submitted
April 27, 2025
Published
2025-06-12

Abstract

In recent years, the diversity of new organic-inorganic hybrid perovskite materials has received extensive attention, for tremendous outstanding properties including large optical absorption coefficients, high carrier transport mobilities, long-range charge-carrier diffusions, low exciton binding energies, adjustable bandgaps, narrow-band bright photoluminescence as well as the compatibility of simple processing techniques. Because of these excellent properties, perovskite materials are widely used in solar cells, light-emitting devices, photodetectors, photocatalysis, etc. Here we reviewed the fundamental structure and properties of perovskite materials, and summarize the diverse preparation methods of perovskites along with the key factors in nucleation and growth control to prepare high-quality bulk crystals or films with less defects and stabilized performances against the external corrosive environments. The applications of perovskite materials accompanied with the relative bulk or interface ameliorations are discussed, and finally the prospects of such materials are expected. Overall, this review demonstrates the prevailing preparation mechanisms, challenges for high-quality perovskite materials and their vital importance in corresponding applications.

References

  1. Korshunova K, Winterfeld L, Beenken W, raunge E. Thermodynamic stability of mixed Pb:Sn methyl-ammonium halide perovskites. Physica Status Solidi (B) Basic Research 2016, 253: 1907-1915. https://doi.org/10.1002/pssb.201600136
  2. Li C, Ding W, Feng L, Gao Y. Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B: Structural Science 2008, 64: 702-707. https://doi.org/10.1107/S0108768108032734
  3. Wang K, Yang D, Wu C. Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science 2019, 106: 100580. https://doi.org/10.1016/j.pmatsci.2019.100580
  4. Gao Y, Song Z, Fu Q, Controlled Nucleation and Oriented Crystallization of Methylammonium-Free Perovskites via In Situ Generated 2D Perovskite Phases. Advanced Materials 2024, 36: 2405921. https://doi.org/10.1002/adma.202405921
  5. Zhu HW, Liu YH. Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials. 2020, 32: 1-8. https://doi.org/10.1002/adma.201907757
  6. Liu Y, Yang Z, Cui Y. Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials. 2015, 27: 5176-5183. https://doi.org/10.1002/adma.201502597
  7. Chen S, Dai X, Xu S, Jiao H, Zhao L, J. Huang. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373: 902. https://doi.org/10.1126/science.abi6323
  8. Feng W, Tao J, Liu G, Yang G, Zhong JX, Angew. Chem., Int. Ed. 2023, 62: 202300265. https://doi.org/10.1002/anie.202300265
  9. Alcocer MJ P, Leijtens T. Electron-Hole Diffusion Lengths Exceeding Trihalide Perovskite Absorber. Science 2013, 342: 341-344. https://doi.org/10.1126/science.1243982
  10. Chen H,Ye F. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature. 2017, 550: 92-95. https://doi.org/10.1038/nature23877
  11. Li M, Zhao C. Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials. 2018, 8: 1801509. https://doi.org/10.1002/aenm.201801509
  12. Wang Y, Chen W. Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Advanced Materials. 2019, 31: 1-10. https://doi.org/10.1002/adma.201902781
  13. Quan, L. N., García de Arquer, F. P. Perovskites for Light Emission. Advanced Materials. 2018, 30: 1-19. https://doi.org/10.1002/adma.201801996
  14. Cao Y, Wang N. Structures. Nature (2018).
  15. Tian W, Zhou H. Hybrid Organic-Inorganic Perovskite Photodetectors. Small. 2017, 13: 1702107. https://doi.org/10.1002/smll.201702107
  16. Zhang X, Dong X. A Self-Powered Photodetector Based on Polarization-Driven in CH3NH3PbI3 Single Crystal (100) Plane. Chemical Engineering Journal 125957 (2020). https://doi.org/10.1016/j.cej.2020.125957
  17. Chen J, Du W. Perovskite quantum dot lasers. InfoMat. 2020, 2: 170-183. https://doi.org/10.1002/inf2.12051
  18. Xu YF, Yang M. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society. 2017, 139: 5660-5663. https://doi.org/10.1021/jacs.7b00489
  19. Zhu X, Lin Y. Lead halide perovskites for photocatalytic organic synthesis. Nature Communications. 2019, 10: 1-10 . https://doi.org/10.1038/s41467-019-10634-x
  20. Wang, T, Zeng, G, Yang, YM. Advances in Metal Halide Perovskite Scintillators for X-Ray Detection. Nano-Micro Lett. 2025,17: 275. https://doi.org/10.1007/s40820-025-01772-7
  21. Pan A, Ma X. CsPbBr3 Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO2 Reduction. Journal of Physical Chemistry Letters. 2019, 10: 6590-6597. https://doi.org/10.1021/acs.jpclett.9b02605
  22. Song X, Hu J, Zeng H. Two-dimensional semiconductors: Recent progress and future perspectives. Journal of Materials Chemistry C. 2013, 1: 2952-2969. https://doi.org/10.1039/c3tc00710c
  23. Wang X, Ling Y. Dynamic Electronic Junctions in Organic-Inorganic Hybrid Perovskites. Nano Letters. 2017, 17: 4831-4839. https://doi.org/10.1021/acs.nanolett.7b01665
  24. Ha ST, Liu X. Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials. 2014, 2: 838-844. https://doi.org/10.1002/adom.201400106
  25. Mao L, Stoumpos CC, Kanatzidis MG. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society. 2019, 141: 1171-1190. https://doi.org/10.1021/jacs.8b10851
  26. Krishna A, Gottis S. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? Advanced Functional Materials. 2019, 29: 1-20. https://doi.org/10.1002/adfm.201806482
  27. Tsai, H. et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature. 2016, 536:312-316. https://doi.org/10.1038/nature18306
  28. Yuan, C. L.; Zhang, Z. T.; Tang, S. Y.; Gou, Y. S.; Zhao, P.; Li, H. M.; Yu, H., Cooperation of Dual Organic Spacers and A Site Cations for High-Performance Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Chempluschem 2025. https://doi.org/10.1002/cplu.202500169
  29. Zhang, F.; Lu, H. P.; Tong, J. H.; Berry, J. J.; Beard, M. C.; Zhu, K., Advances in two-dimensional organic-inorganic hybrid perovskites. Energy & Environmental Science 2020, 13 (4): 1154-1186. https://doi.org/10.1039/C9EE03757H
  30. Wu, Y. et al. In Situ Passivation of PbBr64- Octahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters. 2018, 3: 2030-2037. https://doi.org/10.1021/acsenergylett.8b01025
  31. Spina M, Lehmann M. Microengineered CH3NH3PbI3 Nanowire/Graphene Phototransistor for Low-Intensity Light Detection at Room Temperature. Smal.l 2015, 11: 4824-4828. https://doi.org/10.1002/smll.201501257
  32. Chang PH, Liu S. Ultrahigh responsivity and detectivity graphene-perovskite hybrid phototransistors by sequential vapor deposition. Scientific Reports. 2017, 7: 1-10. https://doi.org/10.1038/srep46281
  33. Cheng HC,Wang G. Van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. Nano Letters. 2016, 16: 367-373. https://doi.org/10.1021/acs.nanolett.5b03944
  34. Dong Q, Fang Y. Electron-hole diffusion lengths > 175 m m in solution-grown CH 3 NH 3 PbI 3 single crystals. Science. 2015, 347: 967-970. https://doi.org/10.1126/science.aaa5760
  35. Zhou H, Nie Z. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications. RSC Advances. 2015, 5: 85344-85349. https://doi.org/10.1039/C5RA17579H
  36. Liu Y, Ren X. 120 Mm Single-Crystalline Perovskite and Wafers: Towards Viable Applications. Science China Chemistry. 2017, 60: 1367-1376. https://doi.org/10.1007/s11426-017-9081-3
  37. Dang Y, Ju D, Wang L. Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm. 2016, 18: 4476-4484. https://doi.org/10.1039/C6CE00655H
  38. Yang Z, Deng Y. High-Performance Single-Crystalline Perovskite Thin-Film Photodetector. Advanced Materials. 2018, 30: 1-7. https://doi.org/10.1002/adma.201704333
  39. Bi C, Wang Y. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications. 2015, 6: 1-7. https://doi.org/10.1038/ncomms8747
  40. Dirin DN, Cherniukh I, Yakunin S. Solution-Grown CsPbBr3Perovskite Single Crystals for Photon Detection. Chemistry of Material.s 2016, 28: 8470-8474. https://doi.org/10.1021/acs.chemmater.6b04298
  41. Peng W, Wang L. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells. Advanced Materials. 2016, 28: 3383-3390. https://doi.org/10.1002/adma.201506292
  42. Zhumekenov AA, Burlakov M. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites. ACS Energy Letters 2, 1782-1788 (2017). https://doi.org/10.1021/acsenergylett.7b00468
  43. Yao Z, Yang Z. Local temperature reduction induced crystallization of MASnI3 and achieving a direct wafer production. RSC Advances. 2017, 7: 38155-38159. https://doi.org/10.1039/C7RA07101A
  44. Wang Q, Lin F. Enhancing efficiency of perovskite solar cells by reducing defects through imidazolium cation incorporation. Materials Today Energy. 2018, 7: 161-168. https://doi.org/10.1016/j.mtener.2017.09.007
  45. Gupta R, Korukonda T. Room temperature synthesis of perovskite (MAPbI3) single crystal by anti-solvent assisted inverse temperature crystallization method. Journal of Crystal Growth. 2020, 537: 125598. https://doi.org/10.1016/j.jcrysgro.2020.125598
  46. Tidhar Y, Edri E. Crystallization of methyl ammonium lead halide perovskites: Implications for photovoltaic applications. Journal of the American Chemical Society. 2014, 136: 13249-13256. https://doi.org/10.1021/ja505556s
  47. Shi D, Adinolfi V. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 2015, 347: 519-522. https://doi.org/10.1126/science.aaa2725
  48. Yu W, Li F. Single crystal hybrid perovskite field-effect transistors. Nature Communications. 2018, 9: 1-10. https://doi.org/10.1038/s41467-018-07706-9
  49. Zhang, X. L.; Huang, H. H.; Zhao, C. Y.; Yuan, J. Y., Surface chemistry-engineered perovskite quantum dot photovoltaics. Chemical Society Reviews 2025, 54 (6): 3017-3060. https://doi.org/10.1039/D4CS01107D
  50. Chen, Z. A.; Li, H. T.; Yuan, C. X.; Gao, P. L.; Su, Q.; Chen, S. M., Color Revolution: Prospects and Challenges of Quantum-Dot Light-Emitting Diode Display Technologies. Small Methods 2024, 8 (2): 202300359. https://doi.org/10.1002/smtd.202300359
  51. Choi, D.; Kim, H.; Bae, Y.; Lim, S.; Park, T., Perovskite Colloidal Quantum Dots with Tailored Properties: Synthesis Strategies and Photovoltaic Applications. Acs Energy Letters 2024, 9 (6): 2633-2658. https://doi.org/10.1021/acsenergylett.4c00632
  52. Qin, Z. P.; Wang, S. R.; Zhu, Y. L.; Yuan, L. F.; Zhang, X. Y.; Li, X. G.; Liu, H. L., Co-regulation strategy dominated by double short molecules permitting the regrowth of quantum dots for efficient deep-blue perovskite light-emitting diodes. Nano Energy 2024, 121: 109263. https://doi.org/10.1016/j.nanoen.2024.109263
  53. Zhou, J.; Liu, H. L.; Wang, S. S.; Yuan, L. F.; Dridi, N.; Wang, S. R.; Mattoussi, H.; Li, X. G., Ca2+ induced highly fluorescent CsPb(Br/Cl)3 perovskite quantum dots via fast Anion-Exchange & Cation-Doping Inter-Promotion strategy for efficient deep-blue light-emitting diodes. Chemical Engineering Journal 2024, 489: 151227. https://doi.org/10.1016/j.cej.2024.151227
  54. Zhang X, Wang W. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy. 2017, 37: 40-45. https://doi.org/10.1016/j.nanoen.2017.05.005
  55. Pascoe AR, Gu Q. Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. Science China Materials. 2017, 60: 617-628. https://doi.org/10.1007/s40843-017-9043-y
  56. Zhou Y, Game OS. Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization. Journal of Physical Chemistry Letters. 2015, 6: 4827-4839. https://doi.org/10.1021/acs.jpclett.5b01843
  57. Lamer VK, Dinegar RH. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society.1950, 72: 4847-4854. https://doi.org/10.1021/ja01167a001
  58. Huang F, LiM. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science. 2019, 12: 518-549. https://doi.org/10.1039/C8EE03025A
  59. Eperon GE, Burlakov VM. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials. 2014, 24: 151-157. https://doi.org/10.1002/adfm.201302090
  60. Zhang Y, Liu Y. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. Journal of Materials Chemistry C. 2016, 4: 9172-9178. https://doi.org/10.1039/C6TC03592B
  61. Guo Y, Yin X, Liu J. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method. Journal of Materials Chemistry A. 2019, 7: 19008-19016. https://doi.org/10.1039/C9TA03336J
  62. Murali B, Saidaminov M. Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C. 2016, 4: 2545-2552. https://doi.org/10.1039/C6TC00610H
  63. Liu X, Tian X. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy. 2019, 56: 184-195. https://doi.org/10.1016/j.nanoen.2018.11.053
  64. Bu, T. L.; Ono, L. K.; Li, J.; Su, J.; Tong, G. Q.; Zhang, W.; Liu, Y. Q.; Zhang, J. H.; Chang, J. J.; Kazaoui, S.; Huang, F. Z.; Cheng, Y. B.; Qi, Y. B., Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nature Energy 2022, 7 (6): 528-536. https://doi.org/10.1038/s41560-022-01039-0
  65. Burgués-Ceballos I, Stella M. Towards industrialization of polymer solar cells: Material processing for upscaling. Journal of Materials Chemistry A. 2014, 2: 17711-17722. https://doi.org/10.1039/C4TA03780D
  66. Ge X, Huang Z, Gao Y, Liu Z, Shi B, Zhang XD, Electronic Homogenization Regulation via Nicotinamide Derivative Ligands for Efficient Blade-Coated Wide-Bandgap Perovskite Solar Cells. Adv. Funct. Mater. 2025: 2503504. https://doi.org/10.1002/adfm.202503504
  67. Ma, M. G.; Zhang, C. L.; Ma, Y. J.; Li, W. L.; Wang, Y.; Wu, S. H.; Liu, C.; Mai, Y. H., Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics. Nano-Micro Letters 2025, 17 (1). https://doi.org/10.1007/s40820-024-01538-7
  68. Mohamad Noh MF, Arzaee N. High-humidity processed perovskite solar cells. Journal of Materials Chemistry A. 2020, 8: 10481-10518. https://doi.org/10.1039/D0TA01178A
  69. Gao H, Bao C. Nucleation and crystal growth of organic-inorganic lead halide perovskites under different relative humidity. ACS Applied Materials and Interfaces. 2015, 7: 9110-9117. https://doi.org/10.1021/acsami.5b00895
  70. Wang F, Zhang T. Steering the crystallization of perovskites for high-performance solar cells in ambient air. Journal of Materials Chemistry A. 2019, 7: 12166-12175. https://doi.org/10.1039/C9TA02566A
  71. Kim JH, Williams ST. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials. 2015, 5: 1401229. https://doi.org/10.1002/aenm.201401229
  72. Wang Q, Eslamian M. Achieving fully blade-coated ambient-processed perovskite solar cells by controlling the blade-coater temperature. IEEE Journal of Photovoltaics. 2018, 8: 1662-1669. https://doi.org/10.1109/JPHOTOV.2018.2861752
  73. Deng Y, Zheng X. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy. 2018, 3: 560-566. https://doi.org/10.1038/s41560-018-0153-9
  74. Li J, Munir R. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells. Joule. 2018, 2: 1313-1330. https://doi.org/10.1016/j.joule.2018.04.011
  75. Hariz, A. Perspectives on organolead halide perovskite photovoltaics. Journal of Photonics for Energy. 2016 6: 032001. https://doi.org/10.1117/1.JPE.6.032001
  76. Mitzi DB, Prikas MT, Chondroudis K. Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chemistry of Materials. 1999, 11: 542-544. https://doi.org/10.1021/cm9811139
  77. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013, 501: 395-398. https://doi.org/10.1038/nature12509
  78. Liu Z, Li Y. One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. Journal of Physical Chemistry Letters. 2019, 10: 2363-2371. https://doi.org/10.1021/acs.jpclett.9b00777
  79. Mi Y, Liu Z. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. Small. 2018, 14:1-8. https://doi.org/10.1002/smll.201703136
  80. Chen J, Fu Y. Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters. 2020, 17: 460-466. https://doi.org/10.1021/acs.nanolett.6b04450
  81. Huo C, Liu X, Song X. Field-effect transistors based on van-der-waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. Journal of Physical Chemistry Letters. 2017, 8: 4785-4792. https://doi.org/10.1021/acs.jpclett.7b02028
  82. Kuang M, Wang L. Controllable Printing Droplets for High-Resolution Patterns. Advanced Materials. 2014, 26: 6950-6958. https://doi.org/10.1002/adma.201305416
  83. Ge D, Yang L, Wu G. Spray coating of superhydrophobic and angle-independent coloured films. Chemical Communications. 2014, 50: 2469-2472. https://doi.org/10.1039/c3cc48962k
  84. Gu Z, Huang Z, Li C. A general printing approach for scalable growth of perovskite single-crystal films. Science Advances. 2018, 4: 1-9. https://doi.org/10.1126/sciadv.aat2390
  85. Chouhan L, Ghimire S, Subrahmanyam C. Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews. 2020, 49: 2869-2885. https://doi.org/10.1039/C9CS00848A
  86. Chen B, Rudd PN, Yang S. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews. 2019, 48: 3842-3867. https://doi.org/10.1039/C8CS00853A
  87. Xu J, Buin A. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications. 2015, 6: 1-8. https://doi.org/10.1038/ncomms8081
  88. Abate A, Saliba M. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Letters. 2014, 14: 3247-3254. https://doi.org/10.1021/nl500627x
  89. Kavadiya S, Huang S, Niedzwiedzki DM. Under Humid Ambient Conditions. 2016, 7: 1-7. https://doi.org/10.1002/aenm.201700210
  90. Ye FY, Zhang S, Lang F, Minimizing Recombination at the Perovskite/C60 Interface through a Volatile Highly Dense Molecular Interlayer. ACS Energy Lett. 2025: 2942-2951. https://doi.org/10.1021/acsenergylett.5c00615
  91. Foley BJ, Girard J. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. Journal of Materials Chemistry A. 2017, 5: 113-123. https://doi.org/10.1039/C6TA07671H
  92. Fu Y, Rea M. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in Thin Films. Chemistry of Materials. 2017, 29: 8385-8394. https://doi.org/10.1021/acs.chemmater.7b02948
  93. Liu Z, Hu J. Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials. 2017, 29: 1-8. https://doi.org/10.1002/adma.201606774
  94. Cheng Z, Lin J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm. 2010, 12: 2646-2662. https://doi.org/10.1039/c001929a
  95. Smith IC, Hoke ET, Solis-Ibarra D. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie. 2014, 126: 11414-11417. https://doi.org/10.1002/ange.201406466
  96. Jiang Q, Zhao Y. Surface passivation of perovskite film for efficient solar cells. Nature Photonics. 2019, 13: 460-466. https://doi.org/10.1038/s41566-019-0398-2
  97. Zheng X, Hou Y. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy. 2020, 5: 131-140. https://doi.org/10.1038/s41560-019-0538-4
  98. Zhao H, Wang S. Enhanced stability and optoelectronic properties of MAPbI3 films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A. 2018, 6: 10825-10834. https://doi.org/10.1039/C8TA00457A
  99. Wang G, Wang L. Fabrication of efficient formamidinium perovskite solar cells under ambient air via intermediate-modulated crystallization. Solar Energy. 2019, 187: 147-155. https://doi.org/10.1016/j.solener.2019.05.033
  100. Binek A, Hanusch FC, Docampo P. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. Journal of Physical Chemistry Letters. 2015, 6: 1249-1253. https://doi.org/10.1021/acs.jpclett.5b00380
  101. Liang PW, Liao C. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials. 2014, 26: 3748-3754. https://doi.org/10.1002/adma.201400231
  102. Li J, Dong X. Electronic coordination effect of the regulator on perovskite crystal growth and its high-performance solar cells. ACS Applied Materials and Interfaces. 2020, 12: 19439-19446. https://doi.org/10.1021/acsami.0c00762
  103. Bi DQ, Yi CY. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy. 2016, 1:16142. https://doi.org/10.1038/nenergy.2016.142
  104. Li G,Yao Y. ‘Solvent annealing’ effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials. 2007, 17: 1636-1644. https://doi.org/10.1002/adfm.200600624
  105. Im JH, Jang IH, Pellet N, Grätzel M. Growth of CH3 NH3 PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology. 2014, 9: 927-932. https://doi.org/10.1038/nnano.2014.181
  106. Yu Y,Wang C. Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters. 2017, 2: 1177-1182. https://doi.org/10.1021/acsenergylett.7b00278
  107. Bai S, Da P. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature. 2019, 571: 245-250. https://doi.org/10.1038/s41586-019-1357-2
  108. Yang G, Qin P, Fang G. A Lewis Base-Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells. Solar RRL. 2018, 2: 1800055. https://doi.org/10.1002/solr.201800055
  109. Luo D, Yang W. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science. 2018, 360: 1442-1446. https://doi.org/10.1126/science.aap9282
  110. Zhou W, Li D. Zwitterion Coordination Induced Highly Orientational Order of CH3NH3PbI3 Perovskite Film Delivers a High Open Circuit Voltage Exceeding 1.2 V. Advanced Functional Materials. 2019, 29: 1-11. https://doi.org/10.1002/adfm.201901026
  111. Wang Y, Ibrahim M. Thermodynamically stabilized b-CsPbI3-based perovskite solar cells with efficiencies >18%. Science. 2019, 365: 591-595. https://doi.org/10.1126/science.aav8680
  112. Peng, J. et al. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials. 2018, 8:1801208. https://doi.org/10.1002/aenm.201801208
  113. Zhang Q, Zhu W. Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2 Solar Cells with High Photovoltages. ACS Applied Materials and Interfaces. 2019, 11: 2997-3005. https://doi.org/10.1021/acsami.8b17839
  114. Jia X, Liu L, Fang Z. TBAB additive for inorganic CsPbI2.4Br0.6 perovskite solar cells with efficiency beyond 15%. Journal of Materials Chemistry C. 2019, 7: 7207-7211. https://doi.org/10.1039/C9TC02362C
  115. Chen Q, Zhou H. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters. 2014 14: 4158-4163. https://doi.org/10.1021/nl501838y
  116. Lee JW, Kim S. The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Letters. 2017, 17: 4270-4276. https://doi.org/10.1021/acs.nanolett.7b01211
  117. Xiao M, Huang F. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie - International Edition. 2014, 53: 9898-9903. https://doi.org/10.1002/anie.201405334
  118. Jeon NJ, Na H. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy. 2018, 3: 682-689. https://doi.org/10.1038/s41560-018-0200-6
  119. Liu S, Biju VP, Qi Y. Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 2023, 15(1). https://doi.org/10.1038/s41427-023-00474-z
  120. Yan, P. Y.; Yang, D. B.; Wang, H. Q.; Yang, S. C.; Ge, Z. Y., Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy & Environmental Science 2022, 15 (9): 3630-3669. https://doi.org/10.1039/D2EE01256A
  121. Tan, Q.; Li, Z. N.; Luo, G. F.; Zhang, X. S.; Che, B.; Chen, G. C.; Gao, H.; He, D.; Ma, G. Q.; Wang, J. F.; Xiu, J. W.; Yi, H. Q.; Chen, T.; He, Z. B., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 2023, 620 (7974): 545-551. https://doi.org/10.1038/s41586-023-06207-0
  122. Yu, X.; Sun, X.; Zhu, Z.; Li, Z. a., Stabilization strategies of buried interface for efficient SAM based inverted perovskite solar cells. Angewandte Chemie-International Edition 2025, 64: e202419608. https://doi.org/10.1002/anie.202419608
  123. Almasabi, K.; Zheng, X.; Turedi, B.; Alsalloum, A. Y.; Lintangpradipto, M. N.; Yin, J.; Gutiérrez-Arzaluz, L.; Kotsovos, K.; Jamal, A.; Gereige, I.; Mohammed, O. F.; Bakr, O. M., Hole-Transporting Self-Assembled Monolayer Enables Efficient Single-Crystal Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters 2023, 8 (2): 950-956. https://doi.org/10.1021/acsenergylett.2c02333
  124. Xing Z, Jin G, Du Q. Ions-induced Assembly of Perovskite Nanocomposites for Highly Efficient Light-Emitting Diodes with EQE Exceeding 30%. Adv. Mater. 2024, 36, 2406706. https://doi.org/10.1002/adma.202406706
  125. Feng SC, Shen Y, Hu XM. Efficient and Stable Red Perovskite Light-Emitting Diodes via Thermodynamic Crystallization Control. Adv. Mater. 2024, 36, 2410255. https://doi.org/10.1002/adma.202410255
  126. Lin K, Xiang J. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature. 2018, 562: 245-248. https://doi.org/10.1038/s41586-018-0575-3
  127. Kim YH, Cho H. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Advanced Materials. 2015, 27: 1248-1254. https://doi.org/10.1002/adma.201403751
  128. Tan ZK, Moghaam R. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology. 2014, 9: 687-692. https://doi.org/10.1038/nnano.2014.149
  129. Longo G, Pertegás A, Martínez-Sarti L. Highly luminescent perovskite-aluminum oxide composites. Journal of Materials Chemistry C. 2015, 3: 11286-11289. https://doi.org/10.1039/C5TC02447A
  130. Zhao X, Liu T, Shi W. Capillary-written single-crystalline all-inorganic perovskite microribbon arrays for highly-sensitive and thermal-stable photodetectors. Nanoscale. 2019, 11: 2453-2459. https://doi.org/10.1039/C8NR08890J
  131. Lian Z, Yan Q. High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Scientific Reports. 2015, 5: 1-10. https://doi.org/10.1038/srep16563
  132. Liu Y, Zhang Y. Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Advanced Materials. 2016, 28: 9204-9209. https://doi.org/10.1002/adma.201601995
  133. Saidaminov MI, Haque M. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Advanced Optical Materials. 2017, 5: 1600704. https://doi.org/10.1002/adom.201600704
  134. Sekizawa K, Maeda K, Domen K. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. Journal of the American Chemical Society. 2013, 135: 4596-4599. https://doi.org/10.1021/ja311541a
  135. Abe R, Shinmei K, Hara K, Ohtani B. Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chemical Communications 2009,24:3577-3579. https://doi.org/10.1039/b905935k
  136. Li, F. Z.; Deng, X.; Shi, Z. S.; Wu, S. F.; Zeng, Z. X.; Wang, D.; Li, Y.; Qi, F.; Zhang, Z. M.; Yang, Z. B.; Jang, S. H.; Lin, F. R.; Tsang, S. W.; Chen, X. K.; Jen, A. K. Y., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nature Photonics 2023, 17 (6), 478-484. https://doi.org/10.1038/s41566-023-01180-6
  137. Geng, M. Q.; Li, Y. B.; Wang, Y. N.; Li, J. L.; Lu, D.; Jiang, L.; Meng, Q. Y.; Xu, T. T., Rational design of pyridine bidentate molecules for surface passivating carbon-based perovskite solar cells. Chemical Engineering Journal 2025, 510, 161648. https://doi.org/10.1016/j.cej.2025.161648
  138. Du, S. J.; Guo, Y. X.; Wang, C.; Chen, G. Y.; Li, G.; Liang, J. W.; Chen, W. Q.; Yu, Z. Q.; Ge, Y. S.; Jia, P.; Guan, H. L.; Yu, Z. X.; Cui, H. S.; Yu, Z. H.; Ke, W. J.; Fang, G. J., Improving Crystallization of Wide-Bandgap Lead Halide Perovskite for All-perovskite Tandems. Advanced Energy Materials 2024, 202404180. https://doi.org/10.1002/aenm.202404180
  139. Sun, M. N.; Zhang, F.; Liu, H. L.; Li, X. G.; Xiao, Y.; Wang, S. R., Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A 2017, 5 (26), 13448-13456. https://doi.org/10.1039/C7TA00894E
  140. Zhu, H. W.; Liu, Y. H.; Eickemeyer, F. T.; Pan, L. F.; Ren, D.; Ruiz-Preciado, M. A.; Carlsen, B.; Yang, B. W.; Dong, X. F.; Wang, Z. W.; Liu, H. L.; Wang, S. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Dar, M. I.; Li, X. G.; Grätzel, M., Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials 2020, 32 (12), 1907757. https://doi.org/10.1002/adma.201907757